Shock Waves and Blast Waves

  • Nicholas Apazidis
  • Veronica Eliasson
Part of the Shock Wave and High Pressure Phenomena book series (SHOCKWAVE)


This chapter will provide you with a brief introduction to the mathematical description of shock and blast waves and the most common experimental techniques to study shock wave focusing phenomena. In order to fully understand shock wave focusing, it is necessary to first have a good understanding how a shock wave reacts when it encounters another shock or, for example, a concave solid boundary. Therefore, we will introduce the concept of shock wave reflections, how it was discovered and its two main types, regular reflection and irregular reflection, and provide references for the interested reader to learn more. Self-similar solutions are very common tools to predict the motion of converging shocks, and a brief introduction to this topic is provided in this chapter. Lastly, several of the most common experimental techniques to study shock wave focusing, such as shock tubes, exploding wires, and microexplosives, are presented followed by an introduction to different types of visualization techniques (schlieren and interferometry) that are used to photograph the often remarkable beautiful shock wave dynamics phenomena.


  1. 1.
    Anderson, J.A.: The spectrum of electrically exploded wires. Astrophys. J. 51, 37–48 (1920)CrossRefGoogle Scholar
  2. 2.
    Anderson, J.A.: The spectral energy distribution and opacity of wire explosion vapors. Proc. Natl. Acad. Sci. U.S.A. 8, 231–232 (1922)CrossRefGoogle Scholar
  3. 3.
    Anderson, J.A.: Electrically exploded wires. In: International Critical Tables. McGraw-Hill, New York (1934)Google Scholar
  4. 4.
    Anderson, J.D. Jr.: Modern Compressible Flow: With Historical Perspective. McGraw-Hill, New York (2003)Google Scholar
  5. 5.
    Apazidis, N., Lesser, M.B., Tillmark, N.T., Johansson, B.: An experimental and theoretical study of converging polygonal shock waves. Shock Waves 12, 39–58 (2002)CrossRefGoogle Scholar
  6. 6.
    Bach, G.G., Lee, J.H.S.: An analytical solution for blast waves. AIAA J. 8(2), 271–275 (1970)CrossRefGoogle Scholar
  7. 7.
    Ben-Dor, G.: Shock Wave Reflection Phenomena. Springer, Berlin (1991)Google Scholar
  8. 8.
    Ben-Dor, G.: A state-of-the-knowledge review on pseudo-steady shock-wave reflections and their transition criteria. Shock Waves 15, 277–294 (2006)CrossRefGoogle Scholar
  9. 9.
    Bethe, H.A., Fuchs, K., Hirschfelder, J.O., Magee, J.L., von Neumann, J.: Blast wave. Technical report, Los Alamos Scientific Laboratory (1958)Google Scholar
  10. 10.
    Blackmore, J.T.: Ernst Mach; His Work, Life, and Influence. University of California Press, Los Angeles (1972)Google Scholar
  11. 11.
    Courant, R., Friedrichs, K.O.: Supersonic Flow and Shock Waves. Springer, New York (1948)Google Scholar
  12. 12.
    Efimov, S., Fedotov, A., Gleizer, S., Gurovich, V.T., Bazalitski, G., Krasik, Y.E.: Characterization of converging shock waves generated by underwater electrical wire array explosion. Phys. Plasmas 15(11), 112703–112706 (2008)CrossRefGoogle Scholar
  13. 13.
    Eliasson, V.: On focusing of shock waves. Ph.D. thesis, The Royal Institute of Technology, Stockholm, Sweden (2007)Google Scholar
  14. 14.
    Eliasson, V., Apazidis, N., Tillmark, N.T., Lesser, M.B.: Focusing of strong shocks in an annular shock tube. Shock Waves 15, 205–217 (2006)CrossRefGoogle Scholar
  15. 15.
    Eliasson, V., Apazidis, N., Tillmark, N.T.: Shaping converging shock waves by means of obstacles. J. Vis. 9, 240 (2006)CrossRefGoogle Scholar
  16. 16.
    Eliasson, V., Apazidis, N., and Tillmark, N.: Controlling the form of strong converging shocks by means of disturbances. Shock Waves 17, 29–42 (2007)CrossRefGoogle Scholar
  17. 17.
    Eliasson, V., Tillmark, N, Szeri, A.J., Apazidis, N.: Light emission during shock wave focusing in air and argon. Phys. Fluids 19, 106106 (2007)CrossRefGoogle Scholar
  18. 18.
    Eliasson, V., Kjellander, M., Apazidis, N.: Regular versus Mach reflection for converging polygonal shocks. Shock Waves 17, 43–50 (2007)CrossRefGoogle Scholar
  19. 19.
    Eliasson, V., Gross, J.: Experimental investigation of shock wave amplification using multiple munitions. In: Ben-Dor, G., Sadot, O., Igra, O. (eds.) 30th International Symposium on Shock Waves, vol. 2. Springer, Cham (2017)CrossRefGoogle Scholar
  20. 20.
    Fedotov, A., Grinenko, A., Efimov, S., Krasik, Y.E.: Generation of cylindrically symmetric converging shock waves by underwater electrical explosion of wire array. Appl. Phys. Lett. 90(20), 201502–3 (2007)CrossRefGoogle Scholar
  21. 21.
    Gilburd, L., Efimov, S., Fedotov Gefen, A., Gurovich, V.T., Bazalitski, G., Antonov, O., Krasik, Y.E.: Modified wire array underwater electrical explosion. Laser Part. Beams 30(02), 215–224 (2012)CrossRefGoogle Scholar
  22. 22.
    Gladstone, J.H., Dale, T.P.: Researches on the refraction, dispersion, and sensitiveness of liquids. Philos. Trans. R. Soc. Lond. 12, 448–453 (1863)CrossRefGoogle Scholar
  23. 23.
    Goldstine, H.H., von Neumann, J.: Blast wave calculation. Commun. Pure Appl. Math. 8(2), 327–353 (1955)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Guderley, G.: Starke kugelige und zylindrische Verdichtungsstöße in der Nähe des Kugelmittelpunktes bzw. der Zylinderachse. Luftfahrt Forsch. 19, 302–312 (1942)Google Scholar
  25. 25.
    Hartberger, J.E.: Background-oriented schlieren pattern optimization. Master’s thesis, Air Force Institute of Technology, Wright-Patterson Air Force Base, Ohio, Dec. (2011)Google Scholar
  26. 26.
    Higashino, F., Henderson, L.F., Shimizu, F.: Experiments on the interaction of a pair of cylindrical weak blast waves in air. Shock Waves 1(4), 275–284 (1991)CrossRefGoogle Scholar
  27. 27.
    Hornung, H., Sturtevant, B., Bélanger, J., Sanderson, S., Brouillette, M., Jenkins, M.: Performance data of the new free-piston shock tunnel at GALCIT, 603–610. In: Takayama, K. (Ed.) Shock Waves, Proceedings of the 18th International Symposium on Shock Waves, Sendai, Japan 21-26 July 1992. Springer-Verlag (1992)CrossRefGoogle Scholar
  28. 28.
    Hornung, H.G., Pullin, D.I., Ponchaut, N.F.: On the question of universality of imploding shock waves. Acta Mech. 201, 31–35 (2008)CrossRefGoogle Scholar
  29. 29.
    Hosseini, S.H.R., Takayama, K.: Implosion of a spherical shock wave reflected from a spherical wall. J. Fluid Mech. 530, 223–239 (2005)CrossRefGoogle Scholar
  30. 30.
    Jeon, H.: An experimental study of shock wave attenuation. Ph.D. thesis, University of Southern California (2017)Google Scholar
  31. 31.
    Jeon, H., Eliasson, V.: Shock wave interactions with liquid sheets. Exp. Fluids 58(24), 1–11 (2017)Google Scholar
  32. 32.
    Kandula, M., Freeman, R.: On the interaction and coalescence of spherical blast waves. Shock Waves 18, 21–33 (2008)CrossRefGoogle Scholar
  33. 33.
    Krasik, Y.E., Grinenko, A., Sayapin, A., Efimov, S., Fedotov, A., Gurovich, V.Z., Oreshkin, V.I.: Underwater electrical wire explosion and its applications. IEEE Trans. Plasma Sci. 36(2), 423–434 (2008)CrossRefGoogle Scholar
  34. 34.
    Krasik, Y.E., Fedotov, A., Sheftman, D., Efimov, S., Sayapin, A., Gurovich, V.T., Veksler, D., Bazalitski, G., Gleizer, S., Grinenko, A., Oreshkin, V.I.: Underwater electrical wire explosion. Plasma Sources Sci. Technol. 19(3), 034020–034029 (2010)CrossRefGoogle Scholar
  35. 35.
    Krehl, R., van der Geest, M.: The discovery of the Mach reflection effect and its demonstration in an auditorium. Shock Waves 1, 3–15 (1991)CrossRefGoogle Scholar
  36. 36.
    Lazarus, R.B.: Self-similar solutions for converging shocks and collapsing cavities. SIAM J. Numer. Anal. 18, 316–371 (1981)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Lazarus, R., Richtmyer, R.: Similarity solutions for converging shocks. Technical report, Los Alamos Scientific Laboratory of the University of California, Los Alamos, NM (1977)Google Scholar
  38. 38.
    Lin, S.-C.: Cylindrical shock waves produced by instantaneous energy release. J. Appl. Phys. 25, 54–57 (1954)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Mach, E.: Über den Verlauf der Funkenwellen in der Ebene und im Raum. Sitzungsber Akad Wiss Wien (II. Abth.) 78, 819–838 (1878)Google Scholar
  40. 40.
    Mach, E., Wosyka, J.: Über einige mechanische Wirkungen des elektrischen Funkens. Sitzungsber Akad Wiss Wien (II Abth) 77, 44–52 (1875)Google Scholar
  41. 41.
    McGrath, J.R.: Exploding wire research 1774–1963. NRL Memorandum Report 1698, US Naval Research Laboratory (1966)Google Scholar
  42. 42.
    Meier G.: Computerized background-oriented schlieren. Exp. Fluids 33, 181–187 (2002)CrossRefGoogle Scholar
  43. 43.
    Nairne, E.: Electrical experiments by Mr. Edward Nairne, of London, mathematical instrument-maker, made with a machine of his own workmanship, a description of which is prefixed. Philos. Trans. 64, 79–89 (1774). January 1CrossRefGoogle Scholar
  44. 44.
    Oshima, K.: Blast waves produced by exploding wire. Technical report, Aeronautical Research Institute (1960)Google Scholar
  45. 45.
    Ponchaut, N.F., Hornung, H.G., Pullin, D.I., Mouton, C.A.: On imploding cylindrical and spherical shock waves in a perfect gas. J. Fluid Mech. 560, 103–122 (2006)MathSciNetCrossRefGoogle Scholar
  46. 46.
    Qiu, S., Eliasson, V.: Interaction and coalescence of multiple simultaneous and non-simultaneous blast waves. Shock Waves 26(3), 287–297 (2016)CrossRefGoogle Scholar
  47. 47.
    Reichenbach, H.: Contributions of Ernst Mach to fluid mechanics. Ann. Rev. Fluid Mech. 15, 1–28 (1983)MathSciNetCrossRefGoogle Scholar
  48. 48.
    Sakurai, A.: On the propagation and structure of the blast wave, I. J. Phys. Soc. Jpn. 8(5), 662–669 (1953)MathSciNetCrossRefGoogle Scholar
  49. 49.
    Sakurai, A.: On the propagation and structure of the blast wave, II. J. Phys. Soc. Jpn. 9(2), 256–266 (1954)MathSciNetCrossRefGoogle Scholar
  50. 50.
    Sakurai, A.: Chapter: On the propagation of cylindrical shock waves. In: Exploding Wires, vol. 1, pp. 264–270. Plenum, New York (1959)CrossRefGoogle Scholar
  51. 51.
    Sedov, L.I.: Propagation of intense (strong) blast waves (in Russian). Prikl. Mat. Mek. 10, 241 (1946)Google Scholar
  52. 52.
    Sedov, L.I.: Similarity and Dimensional Methods in Mechanics, 10th edn. Academic, New York/CRC Press, Boca Raton (1993)Google Scholar
  53. 53.
    Semenov, A.N., Berezkina, M.K., Krassovskaya, I.V.: Classification of pseudo-steady shock wave reflection types. Shock Waves 22(4), 307–316 (2012)CrossRefGoogle Scholar
  54. 54.
    Settles, G.S.: Schlieren and Shadowgraph Techniques – Visualizing Phenomena in Transparent Media. Springer, New York (2001)Google Scholar
  55. 55.
    Takayama, K., Kleine, H., Grönig, H.: An experimental investigation of the stability of converging cylindrical shock waves in air. Exp. Fluids 5, 315–322 (1987)Google Scholar
  56. 56.
    Taylor, G.I.: The air wave surrounding an expanding sphere. Proc. R. Soc. Lond. A Math. Phys. Sci. 186, 273–292 (1946)MathSciNetCrossRefGoogle Scholar
  57. 57.
    Taylor, G.I.: The formation of a blast wave by a very intense explosion. I. Theoretical discussion. Proc. R. Soc. Lond. A Math. Phys. Sci. 201, 159–174 (1950)CrossRefGoogle Scholar
  58. 58.
    Taylor, G.I.: The formation of a blast wave by a very intense explosion. II. The atomic explosion of 1945. Proc. R. Soc. Lond. A Math. Phys. Sci. 201, 159–174 (1950)CrossRefGoogle Scholar
  59. 59.
    Toepler, M.: Beobachtung von Metalldampfschichtung bei electrischer Drahtzerstäubung. Annalen der Physik 65, 873–876 (1898)CrossRefGoogle Scholar
  60. 60.
    Veksler, D., Sayapin, A., Efimov, S., Krasik, Y.E.: Characterization of different wire configurations in underwater electrical explosion. IEEE Trans. Plasma Sci. 37(1), 88–98 (2008)CrossRefGoogle Scholar
  61. 61.
    von Neumann, J.: Oblique Reflection of Shocks. It’s Explosives Research Report, no. 12. Department of Navy, Washington, DC (1943)Google Scholar
  62. 62.
    von Neumann, J.: The point source solution. Technical report, National Defense Research Committee, Division B Report AM-9 (1947)Google Scholar
  63. 63.
    Wang, C., Qiu, S., Eliasson, V.: Quantitative pressure measurement of shock waves in water using a schlieren-based visualization technique. Exp. Tech. (2013).
  64. 64.
    Wang, C., Qiu, S., Eliasson, V.: Investigation of shock wave focusing in water in a logarithmic spiral duct, part 1: Weak coupling. Ocean Eng. 102, 174–184 (2014)CrossRefGoogle Scholar
  65. 65.
    Wang, C., Grunenfelder, L., Patwardhan, R., Qiu, S., Eliasson, V.: Investigation of shock wave focusing in water in a logarithmic spiral duct, part 2: strong coupling. Ocean Eng. 102, 185–196 (2015)CrossRefGoogle Scholar
  66. 66.
    Yadav H.S., Murty D.S., Verma S.N.: Measurement of refractive index of water under high dynamic pressures. J. Appl. Phys. 44, 2197–2200 (1973)CrossRefGoogle Scholar
  67. 67.
    Young, R., Glimm, J., Boston, B.: Proceedings of the Fifth International Workshop on Compressible Turbulent Mixing. World Scientific, Singapore (1996)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Nicholas Apazidis
    • 1
  • Veronica Eliasson
    • 2
  1. 1.MechanicsKTH-Royal Institute of TechnologyStockholmSweden
  2. 2.University of California, San DiegoLa JollaUSA

Personalised recommendations