Advertisement

Chronic Complications of Diabetes

Chapter
Part of the Clinical Gastroenterology book series (CG)

Abstract

The prevalence of diabetes and its complications is constantly increasing worldwide, and it is responsible for increased morbidity, disability, and mortality. The most devastating consequences of diabetes are associated with its long-term micro- (retinopathy, nephropathy and neuropathy) and macrovascular complications (cardiovascular and cerebrovascular disease). Up to 75% of patients with diabetes may experience symptoms of gastrointestinal complications. The pathogenesis of gastrointestinal complications is complex, primarily related to autonomic dysfunction of the gastrointestinal tract and also associated with hyperglycemia and duration of diabetes. The metabolic and anatomic changes cause abnormalities in vascular flow, peristalsis, reflective relaxation and interstitial segmentation manifesting clinically as dysphagia, gastroparesis, diarrhea, constipation, abdominal pain, interstitial pseudo-obstruction, and anal incontinence. The management of patients with gastrointestinal complications is challenging and requires a multidisciplinary approach. Genetic components in the genesis of gastrointestinal tract disorders such as esophageal achalasia, functional dyspepsia, irritable bowel syndrome, celiac and Crohn’s disease have been established. Genetic predisposition, environmental factors such as infections and gut dysbiosis play an important role in the development of autoimmune diseases such as type 1 diabetes and Crohn’s disease.

Keywords

Diabetes mellitus Microvascular complications Autonomic neuropathy Gastrointestinal complications Dysphagia Gastroparesis Autoimmune diseases Celiac disease 

References

  1. 1.
    Papatheodorou K, Papanas N, Banach M, Papazoglou D, Edmonds M. Complications of diabetes 2016. J Diabetes Res. 2016;2016:6989453.CrossRefPubMedGoogle Scholar
  2. 2.
    Forbes JM, Cooper ME. Mechanisms of diabetic complications. Physiol Rev. 2013;93:137–88.CrossRefPubMedGoogle Scholar
  3. 3.
    Klein R. Hyperglycemia and microvascular and macrovascular disease in diabetes. Diabetes Care. 1995;18:258–68.CrossRefPubMedGoogle Scholar
  4. 4.
    Gaede P, Vedel P, Larsen N, Jensen GV, Parving HH, Pedersen O. Multifactorial intervention and cardiovascular disease in patients with type 2 diabetes. N Engl J Med. 2003;348:383–93.CrossRefPubMedGoogle Scholar
  5. 5.
    Gross JL, de Azevedo MJ, Silveiro SP, Canani LH, Caramori ML, Zelmanovitz T. Diabetic nephropathy: diagnosis, prevention, and treatment. Diabetes Care. 2005;28:164–76.CrossRefPubMedGoogle Scholar
  6. 6.
    Fong DS, Aiello LP, Ferris FL 3rd, Klein R. Diabetic retinopathy. Diabetes Care. 2004;27:2540–53.CrossRefPubMedGoogle Scholar
  7. 7.
    Ang L, Jaiswal M, Martin C, Pop-Busui R. Glucose control and diabetic neuropathy: lessons from recent large clinical trials. Curr Diab Rep. 2014;14:528.CrossRefPubMedGoogle Scholar
  8. 8.
    American Diabetes Association. Microvascular complications and foot care. Sec. 10. In Standards of Medical Care in Diabetes 2018. Diabetes Care. 2018;41(Suppl. 1):S105–19.CrossRefGoogle Scholar
  9. 9.
    Kahn CR, Saltiel AR. Joslin’s diabetes mellitus. 14th ed. Boston: Lippincott Williams & Wilkins; 2005. p. 145–68.Google Scholar
  10. 10.
    Gregg EW, Li Y, Wang J, Burrows NR, Ali MK, Rolka D, Williams DE, Geiss L. Changes in diabetes-related complications in the United States 1990–2010. N Engl J Med. 2014;370:1514–23.CrossRefPubMedGoogle Scholar
  11. 11.
    Krishnan B, Babu S, Walker J, Walker AB, Pappachan JM. Gastrointestinal complications of diabetes. World J Diabetes. 2013;15:51–63.CrossRefGoogle Scholar
  12. 12.
    Maisey A. A practical approach to gastrointestinal complications of diabetes. Diabetes Ther. 2016;7:379–86.CrossRefPubMedGoogle Scholar
  13. 13.
    Duvnjak LS. Diabetes mellitus and dyspepsia. In: Duvnjak M, editor. Dyspepsia in clinical practice. London: Springer; 2011. p. 253–65.CrossRefGoogle Scholar
  14. 14.
    Rayner CK, Samson M, Jones KL, Horowitz M. Relationships of upper gastrointestinal motor and sensory function with glycemic control. Diabetes Care. 2001;24:371–81.CrossRefPubMedGoogle Scholar
  15. 15.
    Phillips LK, Rayner CK, Jones KL, Horowitz M. An update on autonomic neuropathy affecting the gastrointestinal tract. Curr Diab Rep. 2006;6:417–23.CrossRefPubMedGoogle Scholar
  16. 16.
    Ohlsson B, Melander O, Thorsson O, Olsson R, Ekberg O, Sundkvist G. Oesophageal dysmotility, delayed gastric emptying and autonomic neuropathy correlate to disturbed glucose homeostasis. Diabetologia. 2006;49:2010–4.CrossRefPubMedGoogle Scholar
  17. 17.
    Wilson JA, Vela MF. New esophageal function testing (impedance, Bravo pH monitoring, and high-resolution manometry): clinical relevance. Curr Gastroenterol Rep. 2008;10:222–30.CrossRefPubMedGoogle Scholar
  18. 18.
    Hasler WL. Gastroparesis. Curr Opin Gastroenterol. 2012;28:621–8.CrossRefPubMedGoogle Scholar
  19. 19.
    Russo A, Botten R, Kong MF, Chapman IM, Fraser RJ, Horowitz M, Sun WM. Effects of acute hyperglycemia on anorectal motor and sensory function in diabetes mellitus. Diabet Med. 2004;21:176–82.CrossRefGoogle Scholar
  20. 20.
    Lysy J, Israeli E, Goldin E. The prevalence of chronic diarrhea among diabetic patients. Am J Gastroenterol. 1999;94:2165–70.CrossRefPubMedGoogle Scholar
  21. 21.
    Noel RA, Braun DK, Patterson RE, Bloomgren GL. Increased risk of acute pancreatitis and biliary disease observed in patients with type 2 diabetes: a retrospective cohort study. Diabetes Care. 2009;32:834–8.CrossRefPubMedGoogle Scholar
  22. 22.
    Byrne CD, Targher G. NAFLD: a multisystem disease. J Hepatol. 2015;62:S47–64.CrossRefPubMedGoogle Scholar
  23. 23.
    American Diabetes Association. Classification and diagnosis of diabetes. Sec. 2. In Standards of Medical Care in Diabetes 2018. Diabetes Care. 2018;41(Suppl. 1):S13–28.CrossRefGoogle Scholar
  24. 24.
    Noble JA, Valdes AM, Varney MD, Carlson JA, Moonsamy P, Fear AL, Type 1 Diabetes Genetics Consortium, et al. HLA class I and genetic susceptibility to type 1 diabetes: results from the Type 1 Diabetes Genetics Consortium. Diabetes. 2010;59:2972–9.CrossRefPubMedGoogle Scholar
  25. 25.
    Floyel T, Kaur S, Poicot F. Genes affecting β-cell function in type 1 diabetes. Curr Diab Rep. 2015;15:97.CrossRefPubMedGoogle Scholar
  26. 26.
    Stankov K, Benc D, Draskovic D. Genetic and epigenetic factors in etiology of diabetes mellitus typus 1. Pediatrics. 2013;132:1964–74.CrossRefGoogle Scholar
  27. 27.
    Knip M, Veijola R, Virtanen SM, Hyoty H, Vaarala O, Akerblom HK. Environmental triggers and determinants of type 1 diabetes. Diabetes. 2005;54(Suppl. 2):S125–36.CrossRefPubMedGoogle Scholar
  28. 28.
    Eckel RH, Grundy SM, Zimmet PZ. The metabolic syndrome. Lancet. 2005;365:1415–28.CrossRefPubMedGoogle Scholar
  29. 29.
    Taylor R. Insulin resistance and type 2 diabetes. Diabetes. 2012;61:778–9.CrossRefPubMedGoogle Scholar
  30. 30.
    Mooradian AD. Dyslipidemia in type 2 diabetes mellitus. Nat Clin Pract Endocrinol Metab. 2009;5:150–9.CrossRefPubMedGoogle Scholar
  31. 31.
    Gaulton KJ, Ferreira T, Lee Y, Raimondo A, Mägi R, Reschen ME, et al. Diabetes genetics replication and meta-analysis (DIAGRAM) consortium. Genetic fine mapping and genomic annotation defines causal mechanisms at type 2 diabetes susceptibility loci. Nat Genet. 2015;47:1415–25.CrossRefPubMedGoogle Scholar
  32. 32.
    Knowler WC, Barrett-Connor E, Fowler SE, Hamman RF, Lachin JM, Walker EA, Diabetes Prevention Program Research Group, et al. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med. 2001;346:1343–50.Google Scholar
  33. 33.
    Phillips LS, Ratner RE, Buse JB, Kahn SE. We can change the natural history of type 2 diabetes. Diabetes Care. 2014;37:2668–76.CrossRefPubMedGoogle Scholar
  34. 34.
    Laugesen E, Østergaard JA, Leslie RD. Latent autoimmune diabetes of the adult: current knowledge and uncertainty. Diabet Med. 2015;32:843–52.CrossRefPubMedGoogle Scholar
  35. 35.
    Skyler JS, Bakris GL, Bonifacio E, et al. Differentiation of diabetes by pathophysiology, natural history and prognosis. Diabetes. 2017;66:241–55.CrossRefPubMedGoogle Scholar
  36. 36.
    Campbell AW. Autoimmunity and the gut. Autoimmune Dis. 2014;2014:152428.PubMedCentralPubMedGoogle Scholar
  37. 37.
    Saito YR, Mitra N, Mayer EA. Genetic approaches to functional gastrointestinal disorders. Gastroenterology. 2010;138:1276–85.CrossRefPubMedGoogle Scholar
  38. 38.
    Vaarala O, Atkinson MA, Neu J. The “perfect storm” for type 1 diabetes: the complex interplay between intestinal microbiota, gut permeability, and mucosal immunity. Diabetes. 2008;57:2555–62.CrossRefPubMedGoogle Scholar
  39. 39.
    Sarnelli G, D’Alessandro A, Pesce M, Palumbo I, Cuomo R. Genetic contribution to motility disorders of the upper gastrointestinal tract. World J Gastrointest Pathophysiol. 2013;15:65–73.CrossRefGoogle Scholar
  40. 40.
    Rook GA, Brunet LR. Microbes, immunoregulation, and gut. Gut. 2005;54:317–20.CrossRefPubMedGoogle Scholar
  41. 41.
    Adam B, Liebregts T, Holtmann G. Mechanisms of disease: genetics of functional gastrointestinal disorders—searching the genes that matter. Nat Clin Pract Gastroenterol Hepatol. 2007;4:102–10.CrossRefPubMedGoogle Scholar
  42. 42.
    Saito YA, Mitra N, Mayer EA. Genetic approaches to functional gastrointestinal disorders. Gastroenterology. 2010;138:1276–85.CrossRefPubMedGoogle Scholar
  43. 43.
    Smyth DJ, Plagnol V, Walker NM, Cooper JD, Downes K, Yang JH, et al. Shared and distinct genetic variants in type 1 diabetes and celiac disease. N Engl J Med. 2008;359:2767–77.CrossRefPubMedGoogle Scholar
  44. 44.
    Leonard MM, Cureton PA, Fasano A. Managing coeliac disease in patients with diabetes. Diabetes Obes Metab. 2015;17:3–8.CrossRefPubMedGoogle Scholar
  45. 45.
    da Silva ME, Porta G, Goldberg AC, Bittencourt PL, Fukui RT, Correia MR. Diabetes mellitus-related autoantibodies in childhood autoimmune hepatitis. J Pediatr Endocrinol Metab. 2002;15:831–40.CrossRefPubMedGoogle Scholar
  46. 46.
    The Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3000 shared controls. Nature. 2007;447:661–78.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Vuk Vrhovac Clinic for Diabetes, Endocrinology and Metabolic DiseasesUniversity Hospital MerkurZagrebCroatia
  2. 2.University of Zagreb School of MedicineZagrebCroatia

Personalised recommendations