Skip to main content

Anorectal Function

  • Chapter
  • First Online:
Gastrointestinal Complications of Diabetes

Abstract

The integrated performance of colon, rectum with anal canal, pelvic floor muscles, and neural pathways play an essential role in the normal function of the lower gastrointestinal system. Diabetes mellitus can lead to the impairment of the entire gastrointestinal system, including colon and anorectum as its terminal parts. Diabetes-related impairment of this region of the gastrointestinal tract can cause disturbances which can markedly reduce the quality of life of the affected patients. To objectify the influence of diabetes on this region, there are a number of methods that aim to assess the function of the colon and anorectal function. However, understanding the diabetes-driven changes in the lower part of the gastrointestinal system is a challenge due to the diverse underlying mechanisms that control the gut homeostasis, and considering that in-vivo investigation in humans is not really feasible. Nevertheless, there is a growing amount of knowledge with regard to the effect of diabetes on functions of both colon and anorectum. This chapter provides an overview of functional anatomy, physiology, and the assessment of colonic and anorectal function, as well as the effect of diabetes on the terminal part of the gastrointestinal system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AGE:

Advanced glycation end products

CTT:

Colonic transit time

EAS:

External anal sphincter

EMG:

Electromyography

ENS:

Enteric nervous system

GSH:

Reduced glutathione

IAS:

Internal anal sphincter

ICC:

Interstitial cells of Cajal

NANC:

Non-adrenergic non-cholinergic pathway

NO:

Nitric oxide

NO synthase:

Nitric oxide synthase

PNTML test:

Pudendal nerve terminal motor latency test

RACR:

Rectoanal contractile reflex

RAIR:

Rectoanal inhibitory reflex

ROM:

Radiopaque markers

SMR:

Sensorimotor response

References

  1. Cohn SM, Birnbaum EH, Friel CM. Colon: anatomy and structural anomalies. In: Yamada T, editor. Textbook of gastroenterology. 5th ed. Singapore: Wiley-Blackwell; 2009. p. 1369–85.

    Google Scholar 

  2. Zhao M, Liao D, Zhao J. Diabetes-induced mechanophysiological changes in the small intestine and colon. World J Diabetes. 2017;8(6):249–69. PMID: 28694926.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Bajwa A, Emmanuel A. The physiology of continence and evacuation. Best Pract Res Clin Gastroenterol. 2009;23(4):477–85. PMID: 19647684.

    Article  PubMed  Google Scholar 

  4. Horváth VJ, Putz Z, Izbéki F, Körei AE, Gerő L, Lengyel C, et al. Diabetes-related dysfunction of the small intestine and the colon: focus on motility. Curr Diab Rep. 2015;15(11):94. PMID: 26374571.

    Article  CAS  PubMed  Google Scholar 

  5. Yu SW, Rao SS. Anorectal physiology and pathophysiology in the elderly. Clin Geriatr Med. 2014;30(1):95–106. PMID: 24267605.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Joshi H, Jones O. Clinical, radiological and physiological assessment of anorectal function. Surgery (Oxford). 2014;32(8):404–7. http://www.sciencedirect.com/science/article/pii/S0263931914001136.

    Article  Google Scholar 

  7. Van Koughnett JA, da Silva G. Anorectal physiology and testing. Gastroenterol Clin N Am. 2013;42(4):713–28. PMID: 24280396.

    Article  Google Scholar 

  8. Furness JB, Nguyen TV, Nurgali K, Shimizu Y. The enteric nervous system and its extrinsic connections. In: Yamada T, editor. Textbook of gastroenterology. 5th ed. Singapore: Wiley-Blackwell; 2009. p. 15–39.

    Google Scholar 

  9. Rocca Rossetti S. Functional anatomy of pelvic floor. Arch Ital Urol Androl. 2016;88(1):28–37.

    Article  PubMed  Google Scholar 

  10. Uranga-Ocio JA, Bastús-Díez S, Delkáder-Palacios D, García-Cristóbal N, Leal-García MÁ, Abalo-Delgado R. Enteric neuropathy associated to diabetes mellitus. Rev Esp Enferm Dig. 2015;107(6):366–73. PMID: 26031865.

    PubMed  CAS  Google Scholar 

  11. Yarandi SS, Srinivasan S. Diabetic gastrointestinal motility disorders and the role of enteric nervous system: current status and future directions. Neurogastroenterol Motil. 2014;26(5):611–24. PMID: 24661628.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cho HM. Anorectal physiology: test and clinical application. J Korean Soc Coloproctol. 2010;26(5):311–5. PMID: 21152132.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Scott SM, Gladman MA. Manometric, sensorimotor, and neurophysiologic evaluation of anorectal function. Gastroenterol Clin N Am. 2008;37(3):511–38. PMID: 18793994.

    Article  Google Scholar 

  14. Remes-Troche JM, De-Ocampo S, Valestin J, Rao SS. Rectoanal reflexes and sensorimotor response in rectal hyposensitivity. Dis Colon Rectum. 2010;53(7):1047–54. PMID: 20551758.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Gudsoorkar VS, Quigley EM. Colorectal sensation and motility. Curr Opin Gastroenterol. 2014;30(1):75–83. PMID: 24257038.

    Article  PubMed  Google Scholar 

  16. Maurer AH. Gastrointestinal motility, part 2: small-bowel and colon transit. J Nucl Med. 2015;56(9):1395–400. PMID: 26940448.

    PubMed  CAS  Google Scholar 

  17. Szarka LA, Camilleri M. Methods for the assessment of small-bowel and colonic transit. Semin Nucl Med. 2012;42(2):113–23. PMID: 22293166.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Farmer AD, Scott SM, Hobson AR. Gastrointestinal motility revisited: the wireless motility capsule. United European Gastroenterol J. 2013;1(6):413–21. PMID: 24917991.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Camilleri M, Thorne NK, Ringel Y, Hasler WL, Kuo B, Esfandyari T, et al. Wireless pH-motility capsule for colonic transit: prospective comparison with radiopaque markers in chronic constipation. Neurogastroenterol Motil. 2010;22(8):874–82.e233. PMID: 20465593.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Werth B, Meyer-Wyss B, Spinas GA, Drewe J, Beglinger C. Non-invasive assessment of gastrointestinal motility disorders in diabetic patients with and without cardiovascular signs of autonomic neuropathy. Gut. 1992;33(9):1199–203. PMID: 1427371.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Azpiroz F, Malagelada C. Diabetic neuropathy in the gut: pathogenesis and diagnosis. Diabetologia. 2016;59(3):404–8. PMID: 26643877.

    Article  CAS  PubMed  Google Scholar 

  22. Scott SM. Manometric techniques for the evaluation of colonic motor activity: current status. Neurogastroenterol Motil. 2003;15(5):483–513. PMID: 14507350.

    Article  CAS  PubMed  Google Scholar 

  23. Krishnan B, Babu S, Walker J, Walker AB, Pappachan JM. Gastrointestinal complications of diabetes mellitus. World J Diabetes. 2013;4(3):51–63. PMID: 23772273.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Gregersen H, Liao D, Drewes AM, Drewes AM, Zhao J. Ravages of diabetes on gastrointestinal sensory-motor function: implications for pathophysiology and treatment. Curr Gastroenterol Rep. 2016;18(2):6. PMID: 26768896.

    Article  PubMed  Google Scholar 

  25. Jung HK, Kim DY, Moon IH, Hong YS. Colonic transit time in diabetic patients—comparison with healthy subjects and the effect of autonomic neuropathy. Yonsei Med J. 2003;44(2):265–72. PMID: 12728467.

    Article  PubMed  Google Scholar 

  26. Bian RW, Lou QL, Gu LB, Kong AP, So WY, Ko GT, et al. Delayed gastric emptying is related to cardiovascular autonomic neuropathy in Chinese patients with type 2 diabetes. Acta Gastroenterol Belg. 2011;74(1):28–33. PMID: 21563651.

    PubMed  CAS  Google Scholar 

  27. Søfteland E, Brock C, Frøkjær JB, Brøgger J, Madácsy L, Gilja OH, et al. Association between visceral, cardiac and sensorimotor polyneuropathies in diabetes mellitus. J Diabetes Complicat. 2014;28(3):370–7. PMID: 24355661.

    Article  PubMed  Google Scholar 

  28. Søfteland E, Brock C, Frøkjær JB, Simrén M, Drewes AM, Dimcevski G. Rectal sensitivity in diabetes patients with symptoms of gastroparesis. J Diabetes Res. 2014;2014:784841. PMID: 25136644.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Furlan MM, Molinari SL, Miranda Neto MH. Morphoquantitative effects of acute diabetes on the myenteric neurons of the proximal colon of adult rats. Arq Neuropsiquiatr. 2002;60(3-A):576–81. PMID: 12244395.

    Article  PubMed  Google Scholar 

  30. Du F, Wang L, Qian W, Liu S. Loss of enteric neurons accompanied by decreased expression of GDNF and PI3K/Akt pathway in diabetic rats. Neurogastroenterol Motil. 2009;21(11):1229–e114. PMID: 19709371.

    Article  CAS  PubMed  Google Scholar 

  31. Chandrasekharan B, Anitha M, Blatt R, Shahnavaz N, Kooby D, Staley C, et al. Colonic motor dysfunction in human diabetes is associated with enteric neuronal loss and increased oxidative stress. Neurogastroenterol Motil. 2011;23(2):131–8.e26. PMID: 20939847.

    Article  CAS  PubMed  Google Scholar 

  32. Rivera LR, Poole DP, Thacker M, Furness JB. The involvement of nitric oxide synthase neurons in enteric neuropathies. Neurogastroenterol Motil. 2011;23(11):980–8. PMID: 21895878.

    Article  CAS  PubMed  Google Scholar 

  33. Kashyap P, Farrugia G. Oxidative stress: key player in gastrointestinal complications of diabetes. Neurogastroenterol Motil. 2011;23(2):111–4. PMID: 21226884.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Liu W, Yue W, Wu R. Effects of diabetes on expression of glial fibrillary acidic protein and neurotrophins in rat colon. Auton Neurosci. 2010;154(1–2):79–83. PMID: 20042376.

    Article  CAS  PubMed  Google Scholar 

  35. Ordög T. Interstitial cells of Cajal in diabetic gastroenteropathy. Neurogastroenterol Motil. 2008;20(1):8–18. PMID: 18173559.

    Article  PubMed  Google Scholar 

  36. Wang XY, Sanders KM, Ward SM. Relationship between interstitial cells of Cajal and enteric motor neurons in the murine proximal colon. Cell Tissue Res. 2000;302(3):331–42. PMID: 11151445.

    Article  CAS  PubMed  Google Scholar 

  37. Nakahara M, Isozaki K, Hirota S, Vanderwinden JM, Takakura R, Kinoshita K, et al. Deficiency of KIT-positive cells in the colon of patients with diabetes mellitus. J Gastroenterol Hepatol. 2002;17(6):666–70. PMID: 12100611.

    Article  PubMed  Google Scholar 

  38. Tang X, Duan LP, Wei YY, Yang XS, Zhong YF. Insulin protects the loss of colonic interstitial cells of Cajal and acetylcholine in patients with type 2 diabetes mellitus. Zhonghua Nei Ke Za Zhi. 2010;49(3):234–8. PMID: 20450658.

    PubMed  CAS  Google Scholar 

  39. Albertí E, Mikkelsen HB, Wang XY, Díaz M, Larsen JO, Huizinga JD, et al. Pacemaker activity and inhibitory neurotransmission in the colon of Ws/Ws mutant rats. Am J Physiol Gastrointest Liver Physiol. 2007;292(6):G1499–510. PMID: 17322067.

    Article  CAS  PubMed  Google Scholar 

  40. Yamamoto T, Watabe K, Nakahara M, Ogiyama H, Kiyohara T, Tsutsui S, et al. Disturbed gastrointestinal motility and decreased interstitial cells of Cajal in diabetic db/db mice. J Gastroenterol Hepatol. 2008;23(4):660–7. PMID: 18341539.

    Article  PubMed  Google Scholar 

  41. Kim SJ, Park JH, Song DK, Park KS, Lee JE, Kim ES, et al. Alterations of colonic contractility in long-term diabetic rat model. J Neurogastroenterol Motil. 2011;17(4):372–80. PMID: 22148106.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Forrest A, Huizinga JD, Wang XY, Liu LW, Parsons M. Increase in stretch-induced rhythmic motor activity in the diabetic rat colon is associated with loss of ICC of the submuscular plexus. Am J Physiol Gastrointest Liver Physiol. 2008;294(1):G315–26. PMID: 18006604. Epub 2007 Nov 15.

    Article  CAS  PubMed  Google Scholar 

  43. Takahashi A, Tomomasa T, Kaneko H, Hatori R, Ishige T, Suzuki M, et al. In vivo recording of colonic motility in conscious rats with deficiency of interstitial cells of Cajal, with special reference to the effects of nitric oxide on colonic motility. J Gastroenterol. 2005;40(11):1043–8. PMID: 16322948.

    Article  CAS  PubMed  Google Scholar 

  44. Siegman MJ, Eto M, Butler TM. Remodeling of the rat distal colon in diabetes: function and ultrastructure. Am J Physiol Cell Physiol. 2016;310(2):C151–60. PMID: 26561639.

    Article  PubMed  Google Scholar 

  45. Zhao J, Nakaguchi T, Gregersen H. Biomechanical and histomorphometric colon remodelling in STZ-induced diabetic rats. Dig Dis Sci. 2009;54(8):1636–42. PMID: 18989775.

    Article  CAS  PubMed  Google Scholar 

  46. González N, Prieto I, Del Puerto-Nevado L, Portal-Nuñez S, Ardura JA, Corton M, DiabetesCancerConnect Consortium, et al. 2017 update on the relationship between diabetes and colorectal cancer: epidemiology, potential molecular mechanisms and therapeutic implications. Oncotarget. 2017;8(11):18456–85. PMID: 28060743.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Tsilidis KK, Kasimis JC, Lopez DS, Ntzani EE, Ioannidis JP. Type 2 diabetes and cancer: umbrella review of meta-analyses of observational studies. BMJ. 2015;350:g7607. PMID: 25555821.

    Article  PubMed  Google Scholar 

  48. Deng L, Gui Z, Zhao L, Wang J, Shen L. Diabetes mellitus and the incidence of colorectal cancer: an updated systematic review and meta-analysis. Dig Dis Sci. 2012;57(6):1576–85. PMID: 22350783.

    Article  CAS  PubMed  Google Scholar 

  49. Othman EM, Hintzsche H, Stopper H. Signaling steps in the induction of genomic damage by insulin in colon and kidney cells. Free Radic Biol Med. 2014;68:247–57. PMID: 24355212.

    Article  CAS  PubMed  Google Scholar 

  50. Othman EM, Leyh A, Stopper H. Insulin mediated DNA damage in mammalian colon cells and human lymphocytes in vitro. Mutat Res. 2013;745-746:34–9. PMID: 23524287.

    Article  CAS  PubMed  Google Scholar 

  51. Yang YX, Hennessy S, Lewis JD. Insulin therapy and colorectal cancer risk among type 2 diabetes mellitus patients. Gastroenterology. 2004;127(4):1044–50. PMID: 15480982.

    Article  CAS  PubMed  Google Scholar 

  52. Nie Z, Zhu H, Gu M. Reduced colorectal cancer incidence in type 2 diabetic patients treated with metformin: a meta-analysis. Pharm Biol. 2016;54(11):2636–42. PMID: 27159666.

    Article  CAS  PubMed  Google Scholar 

  53. Jorge JX, Matos HC, Machado JP, Almeida CC. Transit of radiopaque particles through the gastrointestinal tract: comparison between type 2 diabetes patients and healthy individuals. Rev Esp Enferm Dig. 2012;104(3):118–21. PMID: 22449152.

    Article  PubMed  Google Scholar 

  54. Iida M, Ikeda M, Kishimoto M, Tsujino T, Kaneto H, Matsuhisa M, Kajimoto Y, Watarai T, Yamasaki Y, Hori M. Evaluation of gut motility in type II diabetes by the radiopaque marker method. J Gastroenterol Hepatol. 2000;15(4):381–5. PMID: 10824881.

    Article  CAS  PubMed  Google Scholar 

  55. Kawagishi T, Nishizawa Y, Okuno Y, Sekiya K, Morii H. Segmental gut transit in diabetes mellitus: effect of cisapride. Diabetes Res Clin Pract. 1992;17(2):137–44. PMID: 1425148.

    Article  CAS  PubMed  Google Scholar 

  56. Ron Y, Leibovitz A, Monastirski N, Habot B, Segal R. Colonic transit time in diabetic and nondiabetic long-term care patients. Gerontology. 2002;48(4):250–3. PMID: 12053116.

    Article  PubMed  Google Scholar 

  57. Maleki D, Camilleri M, Zinsmeister AR, Rizza RA. Effect of acute hyperglycemia on colorectal motor and sensory function in humans. Am J Phys. 1997;273(4 Pt 1):G859–64. PMID: 9357828.

    CAS  Google Scholar 

  58. Sims MA, Hasler WL, Chey WD, Kim MS, Owyang C. Hyperglycemia inhibits mechanoreceptor-mediated gastrocolonic responses and colonicperistaltic reflexes in healthy humans. Gastroenterology. 1995;108(2):350–9. PMID: 7835576.

    Article  CAS  PubMed  Google Scholar 

  59. Tieppo J, Kretzmann Filho NA, Seleme M, Fillmann HS, Berghmans B, Possa Marroni N. Anal pressure in experimental diabetes. Int J Color Dis. 2009;24(12):1395–9. PMID: 19547989.

    Article  Google Scholar 

  60. Sun WM, Katsinelos P, Horowitz M, Read NW. Disturbances in anorectal function in patients with diabetes mellitus and faecal incontinence. Eur J Gastroenterol Hepatol. 1996;8(10):1007–12. PMID: 8930568.

    Article  CAS  PubMed  Google Scholar 

  61. Beyak MJ, Bulmer DC, Sellers D, Grundy D. Impairment of rectal afferent mechanosensitivity in experimental diabetes in the rat. Neurogastroenterol Motil. 2009;21(6):678–81. PMID: 19239626.

    Article  CAS  PubMed  Google Scholar 

  62. Dong L, Liang X, Sun B, Ding X, Han H, Zhang G, et al. Impairments of the primary afferent nerves in a rat model of diabetic visceral hyposensitivity. Mol Pain. 2015;11:74. PMID: 26652274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Caruana BJ, Wald A, Hinds JP, Eidelman BH. Anorectal sensory and motor function in neurogenic fecal incontinence. Comparison between multiple sclerosis and diabetes mellitus. Gastroenterology. 1991;100(2):465–70. PMID: 1985043.

    Article  CAS  PubMed  Google Scholar 

  64. Cozzolino D, Salvatore T, Giugliano D, Paolisso G, Landolfi V, Del Genio A, et al. Sensorimotor evaluation of ano-rectal complex in diabetes mellitus. Diabete Metab. 1991;17(6):520–4. PMID: 1809597.

    PubMed  CAS  Google Scholar 

  65. Pinna Pintor M, Zara GP, Falletto E, Monge L, Demattei M, Carta Q, et al. Pudendal neuropathy in diabetic patients with faecal incontinence. Int J Color Dis. 1994;9(2):105–9. PMID: 8064189.

    Article  CAS  Google Scholar 

  66. Epanomeritakis E, Koutsoumbi P, Tsiaoussis I, Ganotakis E, Vlata M, Vassilakis JS, et al. Impairment of anorectal function in diabetes mellitus parallels duration of disease. Dis Colon Rectum. 1999;42(11):1394–400. PMID: 10566526.

    Article  CAS  PubMed  Google Scholar 

  67. Aitchison M, Fisher BM, Carter K, McKee R, MacCuish AC, Finlay IG. Impaired anal sensation and early diabetic faecal incontinence. Diabet Med. 1991;8(10):960–3. PMID: 1838049.

    Article  CAS  PubMed  Google Scholar 

  68. Lejeune D, Melange M, Daumerie C, Buysschaert M, Vanheuverzwijn R. Comparative value of anorectal manometry and electrocardiography in the diagnosis of diabeticautonomic neuropathy. Gastroenterol Clin Biol. 1986;10(8–9):554–7. PMID: 3781160.

    PubMed  CAS  Google Scholar 

  69. Hounsom L, Tomlinson DR. Does neuropathy develop in animal models? Clin Neurosci. 1997;4(6):380–9. PMID: 9358984.

    PubMed  CAS  Google Scholar 

  70. Fillmann HS, Llessuy S, Marroni CA, Fillmann LS, Marroni NP. Diabetes mellitus and anal sphincter pressures: an experimental model in rats. Dis Colon Rectum. 2007;50(4):517–22. PMID: 17285232.

    Article  PubMed  Google Scholar 

  71. Rattan S, Chakder S. Role of nitric oxide as a mediator of internal anal sphincter relaxation. Am J Phys. 1992;262(1 Pt 1):G107–12. PMID: 1733256.

    CAS  Google Scholar 

  72. Schiller LR, Santa Ana CA, Schmulen AC, Hendler RS, Harford WV, Fordtran JS. Pathogenesis of fecal incontinence in diabetes mellitus: evidence for internal-anal-sphincter dysfunction. N Engl J Med. 1982;307(27):1666–71. PMID: 7144865.

    Article  CAS  PubMed  Google Scholar 

  73. Tomita R, Tanjoh K, Fujisaki S, Fukuzawa M. The role of nitric oxide (NO) in the human internal anal sphincter. J Gastroenterol. 2001;36(6):386–91. PMID: 11428584.

    Article  CAS  PubMed  Google Scholar 

  74. Terauchi A, Kobayashi D, Mashimo H. Distinct roles of nitric oxide synthases and interstitial cells of Cajal in rectoanal relaxation. Am J Physiol Gastrointest Liver Physiol. 2005;289(2):G291–9. PMID: 15845873.

    Article  CAS  PubMed  Google Scholar 

  75. de Lorijn F, de Jonge WJ, Wedel T, Vanderwinden JM, Benninga MA, Boeckxstaens GE. Interstitial cells of Cajal are involved in the afferent limb of the rectoanal inhibitory reflex. Gut. 2005;54(8):1107–13. PMID: 16009682.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Chey WD, Kim M, Hasler WL, Owyang C. Hyperglycemia alters perception of rectal distention and blunts the rectoanal inhibitory reflex in healthy volunteers. Gastroenterology. 1995;108(6):1700–8. PMID: 7768374.

    Article  CAS  PubMed  Google Scholar 

  77. Avşar E, Ersöz O, Karişik E, Erdoğan Y, Bekiroğlu N, Lawrance R, et al. Hyperglycemia-induced attenuation of rectal perception depends upon pattern of rectal balloon inflation. Dig Dis Sci. 1997;42(11):2206–12. PMID: 9398796.

    Article  PubMed  Google Scholar 

  78. Russo A, Sun WM, Sattawatthamrong Y, Fraser R, Horowitz M, Andrews JM, et al. Acute hyperglycaemia affects anorectal motor and sensory function in normal subjects. Gut. 1997;41(4):494–9. PMID: 9391248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Russo A, Botten R, Kong MF, Chapman IM, Fraser RJ, Horowitz M, et al. Effects of acute hyperglycaemia on anorectal motor and sensory function in diabetes mellitus. Diabet Med. 2004;21(2):176–82. PMID: 14984454.

    Article  CAS  PubMed  Google Scholar 

  80. Hernando-Harder AC, Singer MV, Harder H. Effect of duodenal glucose and acute hyperglycemia on rectal perception and compliance in response to tension-controlled rectal distension in healthy humans. Dig Dis Sci. 2008;53(6):1624–31. PMID: 17932756.

    Article  PubMed  Google Scholar 

  81. Sun WM, Read NW, Prior A, Daly JA, Cheah SK, Grundy D. Sensory and motor responses to rectal distention vary according to rate and pattern of balloon inflation. Gastroenterology. 1990;99(4):1008–15. PMID: 2394323.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marinko Marušić .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Marušić, M., Perić, R.T., Klemenčić, A. (2018). Anorectal Function. In: Duvnjak, M., Smirčić-Duvnjak, L. (eds) Gastrointestinal Complications of Diabetes . Clinical Gastroenterology. Humana Press, Cham. https://doi.org/10.1007/978-3-319-75856-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-75856-5_12

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-75855-8

  • Online ISBN: 978-3-319-75856-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics