Diabetes Mellitus

  • Lea Smirčić DuvnjakEmail author
  • Sandra Vučković Rebrina
Part of the Clinical Gastroenterology book series (CG)


Nowadays, diabetes mellitus (DM) is viewed as a condition of progressive loss of beta cell mass or function caused by the interaction of genetic and environmental factors. In all types of DM, hyperglycemia is associated with the development of the same complications, although their progression may vary. Over recent decades, it has been recognized that the gastrointestinal (GI) tract, historically considered an alimentary organ, plays a crucial role in the regulation of glucose metabolism. It contributes to the maintenance of metabolic homeostasis by controlling the rate of glucose being delivered to the circulation and by secreting multiple hormones from the enteroendocrine cells (EEC) and neurons in the GI tract. GI peptides are involved in the control of gut secretion, nutrient absorption, GI motility and growth, and signaling pathways within the gut–brain axis. The function of the GI system is under control of the autonomic nervous system (ANS), composed of three interdependent parts: sympathetic, parasympathetic, and enteric nervous system (ENS). In addition, current understanding of the relationship between gut microbiota, obesity, and type 2 DM has improved our knowledge about metabolic homeostasis. The gut microbiota has emerged as a potential treatment target in obesity and type 2 DM.


Diabetes mellitus Hyperglycemia Diabetic complications Gastrointestinal function Gastrointestinal hormones Metabolic homeostasis Autonomic nervous system Gut microbiota 


  1. 1.
    Guariguata L, Whiting DR, Hambleton I, Beagley J, Linnenkamp U, Shaw JE. IDF Diabetes Atlas: global estimates of diabetes prevalence for 2013 and projections for 2035. Diabetes Res Clin Pract. 2014;103:137–49.CrossRefPubMedGoogle Scholar
  2. 2.
    American Diabetes Association. Standards of medical care in diabetes—2017. Classification and diagnosis of diabetes. Diabetes Care. 2017;40(Suppl 1):S11–24.CrossRefGoogle Scholar
  3. 3.
    Schwartz SS, Epstein S, Corkey BE, Grant SFA, Gavin JR III, Aguilar RB. The time is right for a new classification system for diabetes: rationale and implications of the b-cell–centric classification schema. Diabetes Care. 2016;39:179–86.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Leslie RD, Palmer J, Schloot NC, Lernmark A. Diabetes at the crossroads: relevance of disease classification to pathophysiology and treatment. Diabetologia. 2016;59:13–20.CrossRefPubMedGoogle Scholar
  5. 5.
    American Diabetes Association. Standards of medical care in diabetes—2017. Pharmacologic approaches to glycemic treatment. Diabetes Care. 2017;40(Suppl 1):S64–74.CrossRefGoogle Scholar
  6. 6.
    Garber AJ, Abrahamson MJ, Barzilay JI, et al. Consensus statement by the American Association of Clinical Endocrinologist and American College of Endocrinology on the comprehensive type 2 diabetes management algorithm—2017 executive summary. Endocr Pract. 2017;23(2):207–38.CrossRefPubMedGoogle Scholar
  7. 7.
    Phillips RJ, Powley TL. Innervation of the gastrointestinal tract: patterns of aging. Auton Neurosci. 2007;136(1–2):1–19.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Mostafa RM, Moustafa YM, Hamdy H. Interstitial cells of Cajal, the Maestro in health and disease. World J Gastroenterol. 2010;16(26):3239–48.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Al-Shboul OA. The importance of interstitial cells of Cajal in the gastrointestinal tract. J Gastroenterol. 2013;19(1):3–15.Google Scholar
  10. 10.
    Ward SM, Sanders KM. Involvement of intramuscular interstitial cells of Cajal in neuroeffector transmission in the gastrointestinal tract. J Physiol. 2006;576(3):675–82.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Uranga-Ocio JA, Bastus-Diez S, Delkader-Palacios D, Garcia-Cristobal N, Leal-Garcia MA, Abalo-Delgado RA. Enteric neuropathy associated to diabetes mellitus. Rev Esp Enferm Dig. 2015;107(6):366–73.PubMedGoogle Scholar
  12. 12.
    Margolis KG, Gershon MD, Bogunović M. Cellular organization of neuroimmune interactions in the gastrointestinal tract. Trends Immunol. 2016;37(7):487–501.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Yarandi S, Srinivasan S. Diabetic gastrointestinal motility disorders and the role of enteric nervous system: current status and future directions. Neurogastroenterol Motil. 2014;26(5):611–24.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Vučković-Rebrina S. Značaj apoptoze i neurotrofina u bolnoj i bezbolnoj dijabetičkoj polineuropatiji u bolesnika s tipom 2 šećerne bolesti [dissertation]. Zagreb: University of Zagreb; 2011. Croatian.Google Scholar
  15. 15.
    Vučković-Rebrina S, Barada A, Smirčić-Duvnjak L. Diabetic autonomic neuropathy. Diabetol Croat. 2013;42–3:73–9.Google Scholar
  16. 16.
    Dockray GJ, Varro A. Editorial overview: gastrointestinal: gut hormones—from bench to bedside. Curr Opin Pharmacol. 2016;31:v–vi.CrossRefPubMedGoogle Scholar
  17. 17.
    Brubaker PL. Gut hormones fulfill their destiny: from basic physiology to the clinic. Annu Rev Physiol. 2014;76:515–7.CrossRefPubMedGoogle Scholar
  18. 18.
    Côté CD, Zadeh-Tahmasebi M, Rasmussen BA, Duca FA, Lam TK. Hormonal signaling in the gut. J Biol Chem. 2014;289(17):11642–9.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Boguszewski CL, van der Lely AJ. The role of the gastrointestinal tract in the control of energy balance. Transl Gastrointest Cancer. 2015;4(1):3–13.Google Scholar
  20. 20.
    Churm R, Davies JS, Stephens JW, Prior SL. Etiology and pathophysiology/obesity comorbidity ghrelin function in human obesity and type 2 diabetes: a concise review. Obes Rev. 2017;18:140–8.CrossRefPubMedGoogle Scholar
  21. 21.
    Colldén G, Tschöp MH, Müller TD. Therapeutic potential of targeting the ghrelin pathway. Int J Mol Sci. 2017;18(4):798.CrossRefPubMedCentralGoogle Scholar
  22. 22.
    Moehlecke M, Canani LH, Silva LO, Trindade MRM, Friedman R, Leitão CB. Determinants of body weight regulation in humans. Arch Endocrinol Metab. 2016;60(2):152–62.CrossRefPubMedGoogle Scholar
  23. 23.
    Nauck M. Incretin therapies: highlighting common features and differences in the modes of action of glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors. Diabetes Obes Metab. 2016;18:203–16.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Campbell JE, Drucker DJ. Pharmacology, physiology, and mechanisms of incretin hormone action. Cell Metab. 2013;17:819–37.CrossRefPubMedGoogle Scholar
  25. 25.
    Holst JJ, Gribble F, Horowitz M, Rayner CK. Roles of the gut in glucose homeostasis. Diabetes Care. 2016;39:884–92.CrossRefPubMedGoogle Scholar
  26. 26.
    Psichas A, Reimann F, Gribble FM. Gut chemosensing mechanisms. J Clin Invest. 2015;125:908–17.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Gribble FM, Reimann F. Enteroendocrine cells: chemosensors in the intestinal epithelium. Annu Rev Physiol. 2016;78:277–99.CrossRefPubMedGoogle Scholar
  28. 28.
    Fournel A, Marlin A, Abot A, et al. Glucosensing in the gastrointestinal tract: impact on glucose metabolism. Am J Physiol Gastrointest Liver Physiol. 2016;310:G645–58.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Maggs D, MacDonald I, Nauck MA. Glucose homeostasis and the gastrointestinal tract: insights into the treatment of diabetes. Diabetes Obes Metab. 2008;10:18–33.PubMedGoogle Scholar
  30. 30.
    Wu T, Rayner CK, Young RL, Horowitz M. Gut motility and enteroendocrine secretion. Curr Opin Pharmacol. 2013;13(6):928–34.CrossRefPubMedGoogle Scholar
  31. 31.
    Wu H, Tremaroli V, Backhed F. Linking microbiota to human diseases: a systems biology perspective. Trends Endocrinol Metab. 2015;26:758–70.CrossRefPubMedGoogle Scholar
  32. 32.
    Munro N. Gut microbiota: its role in diabetes and obesity. Diab Prim Care. 2016;18:1–6.Google Scholar
  33. 33.
    Mikkelsen KH, Frost M, Bahl MI, et al. Effect of antibiotics on gut microbiota, gut hormones and glucose metabolism. PLoS One. 2015;10:e0142352.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Allin KH, Nielsen T, Pedersen O. Gut microbiota in patients with type 2 diabetes mellitus. Eur J Endocrinol. 2015;172:R167–77.CrossRefPubMedGoogle Scholar
  35. 35.
    Baothman OA, Zamzami MA, Taher I, Abubaker J, Abu-Farha M. The role of gut microbiota in the development of obesity and diabetes. Lipids Health Dis. 2016;15:108.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Lea Smirčić Duvnjak
    • 1
    • 2
    Email author
  • Sandra Vučković Rebrina
    • 1
    • 2
  1. 1.Department of Diabetology, Department of NeurologyVuk Vrhovac University Clinic for Diabetes, Endocrinology and Metabolic Disease, UH MerkurZagrebCroatia
  2. 2.University of Zagreb School of MedicineZagrebCroatia

Personalised recommendations