Beyond Uranium, Ca. 1890–1950

  • Helge Kragh
Part of the SpringerBriefs in History of Science and Technology book series (BRIEFSHIST)


The transuranic elements at the end of the periodic table have since the 1960s been known as superheavy elements. Until 1939 no element heavier than uranium was known and yet there was in the earlier period considerable interest in the possible existence of such elements. The interest was in part of a speculative nature and in part based on calculations of the electron structure of heavy elements. After all, why should uranium be the heaviest element in nature? Although transuranic elements were “known” theoretically in the 1920s, it was only with the development of nuclear physics and technology in the following decade that the first of these elements—neptunium and plutonium—were actually produced. By 1951 six transuranic elements had been added to the periodic table, all of them by an innovative group of Californian nuclear scientists.


Transuranic elements Periodic table Niels Bohr Enrico Fermi Glenn Seaborg Neptunium Plutonium 


  1. Anon: Superheavy element 94 discovered in new research. Science News Lett. 37 (22), 387 (1940)Google Scholar
  2. Armbruster, P., Münzenberg, G.: Creating superheavy elements. Sci. Am. 144, 66–72 (1989)CrossRefGoogle Scholar
  3. Armbruster, P., Münzenberg, G.: An experimental paradigm opening up the world of superheavy elements. Eur. Phys. J. H 37, 327–310 (2012)Google Scholar
  4. Baskerville, C.: Thorium, carolinium, berzelium. J. Am. Chem. Soc. 26, 922–941 (1904)CrossRefGoogle Scholar
  5. Bohr, N.: The Theory of Spectra and Atomic Constitution. Cambridge University Press, Cambridge (1922)Google Scholar
  6. Bohr, N.: Linienspektren und Atombau. Ann. Phys. 71, 228–288 (1923)CrossRefGoogle Scholar
  7. Bohr, N.: Niels Bohr. In: Nielsen, J.R. (ed.) Collected Works, vol. 4. North-Holland, Amsterdam (1977)Google Scholar
  8. Childs, P. E.: From hydrogen to meitnerium: naming the chemical elements. In: Thurlow, K. (ed.) Chemical Nomenclature, pp. 27–66. Kluwer Academic, Dordrecht (1998)Google Scholar
  9. Flerov, G.N., Ter-Akopian, G.M.: The physical and chemical aspects of the search for superheavy elements. Pure Appl. Chem. 53, 909–923 (1981)CrossRefGoogle Scholar
  10. Fontani, M., Costa, M., Orna, M.V.: The Lost Elements: The Periodic Table’s Shadow Side. Oxford University Press, Oxford (2015)Google Scholar
  11. Gamow, G.: Concerning the origin of chemical elements. J. Wash. Acad. Sci. 32, 353–355 (1942)Google Scholar
  12. Goldschmidt, V. M.: Geochemische Verteilungsgesetze der Elemente 2. Beziehungen zwischen den geochemischen Verteilungsgesetzen und dem Bau der Atome. Norske Videnskabs-Akademien, Skrifter, Mat. Nat. Klasse (4) (1924)Google Scholar
  13. Goldschmidt, V.M.: Geochemistry. Clarendon Press, Oxford (1954)Google Scholar
  14. Grosse, A.: An unknown radioactivity. J. Am. Chem. Soc. 56, 1922–1924 (1934)CrossRefGoogle Scholar
  15. Grosse, A.: The chemical properties of elements 93 and 94. J. Am. Chem. Soc. 57, 440–441 (1935)CrossRefGoogle Scholar
  16. Grosse, A.: Some physical and chemical properties of element 118 (Eka-Em) and element 86 (Em). J. Inorg. Nucl. Chem. 27, 509–519 (1965)CrossRefGoogle Scholar
  17. Heilbron, J.L., Seidel, R.W.: Lawrence and His Laboratory: A History of the Lawrence Berkeley Laboratory. University of California Press, Berkeley (1989)Google Scholar
  18. Herrmann, G.: Historical reminiscences: The pioneering years of superheavy element research. In: Schädel, M., Shaughnessy, D. (eds.) The Chemistry of Superheavy Elements, pp. 485–510. Springer, Berlin (2014)Google Scholar
  19. Hoffman, D.C., Ghiorso, A., Seaborg, G.T.: Transuranium People: The Inside Story. Imperial College Press, London (2000)Google Scholar
  20. Hofmann, S.: On Beyond Uranium: Journey to the End of the Periodic Table. Taylor & Francis, London (2002)CrossRefGoogle Scholar
  21. Jeans, J.: Astronomy and Cosmogony. Cambridge University Press, Cambridge (1928)MATHGoogle Scholar
  22. Kostecka, K.: Americium—from discovery to the smoke detector and beyond. Bull. Hist. Chem. 33, 89–93 (2008)Google Scholar
  23. Kragh, H.: Quantum generations: a history of physics in the twentieth century. Princeton University Press, Princeton (1999)MATHGoogle Scholar
  24. Kragh, H.: Conceptual changes in chemistry: the notion of a chemical element. Stud. Hist. Philos. Mod. Phys. 31, 435–450 (2000)CrossRefGoogle Scholar
  25. Kragh, H.: Superheavy elements and the upper limit of the periodic table: early speculations. Eur. Phys. J. H 38, 411–431 (2013)CrossRefGoogle Scholar
  26. Kragh, H.: Julius Thomsen: A Life in Chemistry and Beyond. Royal Danish Academy of Sciences and Letters, Copenhagen (2016)Google Scholar
  27. Kragh, H.: On the ontology of superheavy elements. Substantia 2, 7–17 (2017)Google Scholar
  28. MacMillan, E. M.: The transuranium elements: Early history. (1951)
  29. Madelung, E.: Die Mathematischen Hilfsmittel des Physikers. Springer, Berlin (1936)CrossRefMATHGoogle Scholar
  30. Mason, B.: Victor Moritz Goldschmidt: Father of Modern Geochemistry. The Geochemical Society, San Antonio, TX (1992)Google Scholar
  31. Nash, C.: Atomic and molecular properties of elements 112, 114, and 118. J. Phys. Chem. A 109, 3493–3500 (2005)CrossRefGoogle Scholar
  32. Nernst, W.: Das Weltgebäude im Lichte der neueren Forschung. Springer, Berlin (1921)CrossRefMATHGoogle Scholar
  33. Nernst, W.: Physico-chemical considerations in astrophysics. J. Frankl. Inst. 206, 135–142 (1928)CrossRefGoogle Scholar
  34. Oganessian, YuT, et al.: Heavy element research at Dubna. Nucl. Phys. A 734, 109–123 (2004)ADSCrossRefGoogle Scholar
  35. Quill, L.L.: The transuranium elements. Chem. Rev. 23, 87–155 (1938)CrossRefGoogle Scholar
  36. Rydberg, J.R.: Recherches sur le système des éléments. Journal de Chimie et Physique 12, 585–639 (1914)ADSCrossRefGoogle Scholar
  37. Scerri, E.: The Periodic Table: Its Story and Its Significance. Oxford University Press, Oxford (2007)Google Scholar
  38. Scerri, E.: The periodic table. In: Woody, A., Hendry, R., Needham, P. (eds.) Philosophy of Chemistry, pp. 329–338. North-Holland, Amsterdam (2012)Google Scholar
  39. Scerri, E.: A Tale of 7 Elements. Oxford University Press, Oxford (2013)Google Scholar
  40. Seaborg, G.T.: Man-Made Transuranium Elements. Prentice-Hall, Englewood Cliffs (1963)Google Scholar
  41. Seaborg, G.T.: Modern Alchemy: Selected Papers of Glenn T. Seaborg. World Scientific, Singapore (1994a)Google Scholar
  42. Seaborg, G.T.: Terminology of the transuranium elements. Terminology 1, 229–252 (1994)Google Scholar
  43. Seaborg, G.T.: Transuranium elements: past, present, and future. Acc. Chem. Res. 28, 257–264 (1995)Google Scholar
  44. Seaborg, G.T.: Prematurity, nuclear fission, and the transuranium actinide elements. In: Hook, E.B. (ed.) Prematurity in Scientific Discovery, pp. 37–45. University of California Press, Berkeley (2002)Google Scholar
  45. Seaborg, G.T., Loveland, W.D.: The Elements Beyond Uranium. Wiley, New York (1990)Google Scholar
  46. Seaborg, G.T., Wahl, A.C., Kennedy, J.W.: Radioactive element 94 from deuterons. Phys. Rev. 69, 367 (1946)ADSCrossRefGoogle Scholar
  47. Segré, E.: From X-Rays to Quarks: Modern Physicists and Their Discoveries. W. H. Freeman, San Francisco (1980)Google Scholar
  48. Sime, R.L.: The search for transuranium elements and the discovery of nuclear fission. Phys. Perspect. 2, 48–62 (2000)ADSCrossRefGoogle Scholar
  49. Stradins, J.P., Trifonow, D.N., Pijola, S.: Die Evolution der Idee von ‘Inseln Relativer Stabilität‘ der Chemischen Elemente. D.A.V.I.D. Verlagsgesellschaft, Berlin (1987)Google Scholar
  50. Swinne, R.: Zum Ursprung der durchdringenden Höhenstrahlung. Naturwissenschaften 7, 529–530 (1919)ADSCrossRefGoogle Scholar
  51. Swinne, R.: Zwei neue Elemente: Masurium und Rhenium. Zeitschrift für Technische Physik 6, 464–465 (1925)Google Scholar
  52. Swinne, R.: Das periodische System der chemischen Elemente im Lichte des Atombaus. Zeitschrift für Technische Physik 7(166–180), 205–216 (1926)Google Scholar
  53. Swinne, R.: Zur Periodizität der Atomkerne. Wissenschaftliche Veröffentlichungen aus dem Siemens-Konzern 10, 137–147 (1931)Google Scholar
  54. Thompson, S.G., Tsang, C.F.: Superheavy elements. Science 178, 1047–1055 (1972)ADSCrossRefGoogle Scholar
  55. Thomsen, J.: Über die mutmasslische Gruppe inaktiver Elemente. Z. Anorg. Chemie 8, 283–288 (1895)CrossRefGoogle Scholar
  56. Thornton, B.F., Burdette, S.C.: Finding eka-iodine: discovery priority in modern times. Bull. Hist. Chem. 35, 81–85 (2010)Google Scholar
  57. Tilden, W.A.: The Elements: Speculations as to their Nature and Origin. Harper & Brothers, London (1910)MATHGoogle Scholar
  58. Weeks, M.E., Leicester, H.M.: Discovery of the elements. J. Chem. Educ. Easton, PA (1968)Google Scholar
  59. Werner, F.G., Wheeler, J.A.: Superheavy nuclei. Phys. Rev. 109, 126–143 (1958)ADSCrossRefGoogle Scholar
  60. Wheeler, J. A.: Nuclear fission and nuclear stability. In: Pauli, W. (ed.) Niels Bohr and the Development of Physics, pp. 163–184. Pergamon Press, London (1955)Google Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Niels Bohr ArchiveNiels Bohr InstituteCopenhagenDenmark

Personalised recommendations