Advertisement

Photonics in Drug Delivery

  • Anna Karewicz
  • Dorota Lachowicz
  • Aneta Pietraszek
Chapter
Part of the Micro- and Opto-Electronic Materials, Structures, and Systems book series (MOEM)

Abstract

This chapter is focused on the application of photonics in medicine, namely, in the systems designed to facilitate delivery of bioactive agents (drugs, photosensitizers). The introduction of the carrier into such systems allows to increase their efficiency, to reduce side-effects and to precisely control the dose, the place and time of delivery inside the patient’s body. Three main aspects of the problem are analysed in this chapter: (1) using light-sensitive probes to study pharmacokinetics of drugs; (2) the choice of the application route for the photosensitizers used in photodynamic therapy (PDT), including prodrugs, micelles, inorganic and hybrid nanoparticles and virus capsids; and (3) achieving targeted delivery and precise control over the release profiles by the application of the systems containing photoresponsive carriers. The basic mechanisms of the photophysical and photochemical processes involved are discussed, including PDT, photoinduced NO delivery and light-triggered release of drugs from liposomes, prodrugs and other specific systems. The most interesting examples are described, and the advantages and limitations of using various systems are discussed.

Keywords

Photo-imaging agents Photosensitizers Photoresponsive carriers Photoinduced delivery Nitric oxide 

References

  1. 1.
    M. Dobosz, S. Strobel, K.G. Stubenrauch, et al., Noninvasive measurement of pharmacokinetics by near-infrared fluorescence imaging in the eye of mice. J. Biomed. Opt. 19(1), 016022 (2014)CrossRefGoogle Scholar
  2. 2.
    A.M. Laughney, E. Kim, M.M. Sprachman, et al., Single-cell pharmacokinetic imaging reveals a therapeutic strategy to overcome drug resistance to the microtubule inhibitor eribulin. Sci. Transl. Med. 6(261), 261ra152 (2014)CrossRefGoogle Scholar
  3. 3.
    M.-H. Han, A.K. Friedman, Virogenetic and optogenetic mechanisms to define potential therapeutic targets in psychiatric disorders. Neuropharmacology 62, 89–100 (2012)CrossRefGoogle Scholar
  4. 4.
    A.A. Grace, S.B. Floresco, Y. Goto, et al., Regulation of firing of dopaminergic neurons and control of goal-directed behaviors. Trends Neurosci. 30, 220–227 (2007)CrossRefGoogle Scholar
  5. 5.
    J.L. Cao, H.E. Covington, A.K. Friedman, et al., Mesolimbic dopamine neurons in the brain reward circuit mediate susceptibility to social defeat and antidepressant action. J. Neurosci. 30, 16453–16458 (2010)CrossRefGoogle Scholar
  6. 6.
    C. Allen, D. Maysinger, A. Eisenberg, Nano-engineering block copolymer aggregates for drug delivery. Colloids Surf. B Biointerfaces 16, 3–27 (1999)CrossRefGoogle Scholar
  7. 7.
    C.-Y. Chen, C.-K. Syu, H.C. Lin, A stimulated mixed micelle system for in vitro study on chemo-photodynamic therapy. Macromol. Biosci. 16, 188–197 (2016)CrossRefGoogle Scholar
  8. 8.
    H.F. Wang, H.Z. Jia, S.X. Cheng, et al., PEG-stabilized micellar system with positively charged polyester core for fast pH-responsive drug release. Pharm. Res. 29(6), 1582–1594 (2012)CrossRefGoogle Scholar
  9. 9.
    J. Rios-Doria, A. Carie, T. Costich, et al., A versatile polymer micelle drug delivery system for encapsulation and in vivo stabilization of hydrophobic anticancer drugs. J. Drug. Deliv., 951741 (2012)Google Scholar
  10. 10.
    F. Sun, Y. Wang, Y. Wei, et al., Thermo-triggered drug delivery from polymeric micelles of poly(N-isopropylacrylamide-co-acrylamide)-b-poly(n-butyl methacrylate) for tumor targeting. J. Bioact. Compat. Polym. 29(4), 301–317 (2014)CrossRefGoogle Scholar
  11. 11.
    D.H. Thompson, O.V. Gerasimov, J.J. Wheeler, et al., Triggerable plasmalogen liposomes: Improvement of system efficiency. Biochim. Biophys. Acta 1279, 25–34 (1996)CrossRefGoogle Scholar
  12. 12.
    Y. Li, K. Xiao, W. Zhuet, et al., Stimuli-responsive cross-linked micelles for on-demand drug delivery against cancers. Adv. Drug Deliv. Rev. 66, 58–73 (2014)CrossRefGoogle Scholar
  13. 13.
    H. Yin, L. Liao, J. Fang, Enhanced permeability and retention (EPR) effect based tumor targeting: The concept, application and Prospect. JSM Clin. Oncol. Res. 2(1), 1010 (2014)Google Scholar
  14. 14.
    A.M. Master, M. Livingston, N.L. Oleinick, et al., Optimization of a Nanomedicine-based silicon Phthalocyanine 4 photodynamic therapy (pc 4-PDT) strategy for targeted treatment of EGFR-overexpressing cancers. Mol. Pharm. 9(8), 2331–2338 (2012)CrossRefGoogle Scholar
  15. 15.
    C. Conte, S. Maiolino, D.S. Pellosi, et al., Polymeric nanoparticles for cancer photodynamic therapy. Top. Curr. Chem. 370, 61–112 (2016)CrossRefGoogle Scholar
  16. 16.
    C.S. De Paula, A.C. Tedesco, F.L. Primoet, et al., Chloroaluminium phthalocyanine polymeric nanoparticles as photosensitisers: Photophysical and physicochemical characterisation, release and phototoxicity in vitro. Eur. J. Pharm. Sci. 49(3), 371–381 (2013)CrossRefGoogle Scholar
  17. 17.
    P. Nalawade, B. Aware, V.J. Kadam, et al., Layered double hydroxides: A review. J. Sci. Ind. Res. (India) 68, 267–272 (2009)Google Scholar
  18. 18.
    R.K. Kankala, Y. Kuthati, S.H.W. al, Multi-laminated metal hydroxide nanocontainers for oral-specific delivery for bioavailability improvement and treatment of inflammatory paw edema in mice. J. Colloid Interface Sci. 458, 217–228 (2015)CrossRefGoogle Scholar
  19. 19.
    K. Khorsandi, R. Hosseinzadeh, M. Fateh, Curcumin intercalated layered double hydroxide nanohybrid as a potential drug delivery system for effective photodynamic therapy in human breast cancer cells. RSC Adv. 5, 93987–93994 (2015)CrossRefGoogle Scholar
  20. 20.
    P.-R. Wei, Y. Kuthati, R.K. Kankala, et al., Synthesis and characterization of chitosan-coated near-infrared (NIR) layered double hydroxide-Indocyanine green Nanocomposites for potential applications in photodynamic therapy. Int. J. Mol. Sci. 16(9), 20943–20968 (2015)CrossRefGoogle Scholar
  21. 21.
    M. Merchan, T.S. Ouk, P. Kubat, et al., Photostability and photobactericidal properties of porphyrin-layered double hydroxide–polyurethane composite films. J. Mater. Chem. B 1, 2139–2146 (2013)CrossRefGoogle Scholar
  22. 22.
    X.-S. Li, M.-R. Ke, W. Huang, et al., A pH-responsive layered double hydroxide (LDH)–Phthalocyanine nanohybrid for efficient photodynamic therapy. Chemistry 21, 3310–3317 (2015)CrossRefGoogle Scholar
  23. 23.
    B.G. Trewyn, I.I. Slowing, S. Giri, et al., Synthesis and functionalization of a Mesoporous silica nanoparticle based on the sol–gel process and applications in controlled release. Acc. Chem. Res. 40, 846–853 (2007)CrossRefGoogle Scholar
  24. 24.
    M. Arduini, F. Mancin, P. Tecilla, et al., Self-organized fluorescent nanosensors for ratiometric Pb2þ detection. Langmuir 23, 8632–8636 (2007)CrossRefGoogle Scholar
  25. 25.
    I. Roy, T.Y. Ohulchanskyy, H.E. Pudavaret, et al., Ceramic-based nanoparticles entrapping water-insoluble photosensitizing anticancer drugs: A novel drug−carrier system for photodynamic therapy. J. Am. Chem. Soc. 125, 7860–7865 (2003)CrossRefGoogle Scholar
  26. 26.
    F. Selvestrel, F. Moret, D. Segat, et al., Targeted delivery of photosensitizers: Efficacy and selectivity issues revealed by multifunctional ORMOSIL nanovectors in cellular systems. Nanoscale 5, 6106–6116 (2013)CrossRefGoogle Scholar
  27. 27.
    D.J. Evans, The bionanoscience of plant viruses: templates and synthons for new materials. J. Mater. Chem. 18, 3746–3754 (2008)CrossRefGoogle Scholar
  28. 28.
    Q. Zeng, S. Saha, L.A. Lee, et al., Chemoselective modification of turnip yellow mosaic virus by cu(I) catalyzed azide−alkyne 1,3-dipolar cycloaddition reaction and its application in cell binding. Bioconjug. Chem. 22, 58–66 (2011)CrossRefGoogle Scholar
  29. 29.
    B.A. Cohen, M. Bergkvist, Targeted in vitro photodynamic therapy via aptamer-labeled, porphyrin-loaded virus capsids. J. Photochem. Photobiol. B 121, 67–74 (2013)CrossRefGoogle Scholar
  30. 30.
    A.G. Havanessiean, C. Soundaramourty, D. El Khoury, et al., Surface expressed nucleolin is constantly induced in tumor cells to mediate calcium-dependent ligand internalization. PLoS One 5, e15787 (2010)CrossRefGoogle Scholar
  31. 31.
    D. Gabriel, M.F. Zuluaga, N. Lange, On the cutting edge: protease-sensitive prodrugs for the delivery of photoactive compounds. Photochem. Photobiol. Sci. 10, 689–703 (2011)CrossRefGoogle Scholar
  32. 32.
    R. Weissleder, C.H. Tung, U. Mahmood, et al., In vivo imaging of tumors with protease-activated near-infrared fluorescent probes. Nat. Biotechnol. 17(4), 375–378 (1999)CrossRefGoogle Scholar
  33. 33.
    E. Gounaris, C.H. Tung, C. Restaino, et al., Live imaging of cysteine-cathepsin activity reveals dynamics of focal inflammation, angiogenesis, and polyp growth. PLoS One 3, e2916 (2008)CrossRefGoogle Scholar
  34. 34.
    M.R. Hamblin, J.L. Miller, I. Rizvi, et al., Pegylation of charged polymer-photosensitiser conjugates: effects on photodynamic efficacy. Br. J. Cancer 89, 937–943 (2003)CrossRefGoogle Scholar
  35. 35.
    Y. Choi, R. Weissleder, C.H. Tung, Selective antitumor effect of novel protease-mediated photodynamic agent. Cancer Res. 66, 7225–7229 (2006)CrossRefGoogle Scholar
  36. 36.
    B.C. Bae, K. Na, Self-quenching polysaccharide-based nanogels of pullulan/folate-photosensitizer conjugates for photodynamic therapy. Biomaterials 31, 6325–6335 (2010)CrossRefGoogle Scholar
  37. 37.
    F. Caruso, M. Rossi, A. Benson, et al., Ruthenium–Arene complexes of curcumin: X-ray and density functional theory structure, synthesis, and spectroscopic characterization, in vitro antitumor activity, and DNA docking studies of (p-cymene)Ru(curcuminato)chloro. J. Med. Chem. 55, 1072–1081 (2012)CrossRefGoogle Scholar
  38. 38.
    D. Pucci, A. Crispini, B.S. Mendiguchía, et al., Improving the bioactivity of Zn(II)-curcumin based complexes. Dalton Trans. 42, 9679–9687 (2013)CrossRefGoogle Scholar
  39. 39.
    A.K. Renfrew, N.S. Bryce, T.W. Hambley, Delivery and release of curcumin by a hypoxia-activated cobalt chaperone: A XANES and FLIM study. Chem. Sci. 4, 3731–3739 (2013)CrossRefGoogle Scholar
  40. 40.
    R. Pettinari, F. Marchetti, F. Condello, et al., Ruthenium(II)-Arene RAPTA type complexes containing curcumin and bisdemethoxycurcumin display potent and selective anticancer activity. Organometallics 33, 3709−3715 (2014)CrossRefGoogle Scholar
  41. 41.
    T.K. Goswami, S. Gadadharb, B. Gole, et al., Photocytotoxicity of copper(II) complexes of curcumin and N-ferrocenylmethyl-l-amino acids. Eur. J. Med. Chem. 63, 800−810 (2013)CrossRefGoogle Scholar
  42. 42.
    A. Hussain, K. Somyajit, B. Banik, et al., Enhancing the photocytotoxic potential of curcumin on terpyridyl lanthanide(III) complex formation. Dalton Trans. 42, 182−195 (2013)CrossRefGoogle Scholar
  43. 43.
    S. Banerjee, I. Pant, I. Khan, Remarkable enhancement in photocytotoxicity and hydrolytic stability of curcumin on binding to an oxovanadium(IV) moiety. Dalton Trans. 44, 4108−4122 (2015)CrossRefGoogle Scholar
  44. 44.
    S. Banerjee, P. Prasad, I. Khan, et al., Mitochondria targeting photocytotoxic oxidovanadium (IV) complexes of curcumin and (acridinyl) dipyridophenazine in visible light. Anorg. Allg. Chem. 640, 1195−1204 (2014)Google Scholar
  45. 45.
    A.W. Carpenter, M.H. Schoenfisch, Nitric oxide release: Part II. Therapeutic applications. Chem. Soc. Rev. 41, 3742 (2012)CrossRefGoogle Scholar
  46. 46.
    L.K. Keefer, Nitric oxide (NO)- and Nitroxyl (HNO)-generating diazeniumdiolates (NONOates): emerging commercial opportunities. Curr. Top. Med. Chem. 5, 625–636 (2005)CrossRefGoogle Scholar
  47. 47.
    B. Heilman, P.K. Mascharak, Light-triggered nitric oxide delivery to malignant sites and infection. Phil. Trans. R. Soc. A 371, 20120368 (2013)CrossRefGoogle Scholar
  48. 48.
    B.J. Heilman, G.M. Halpenny, P.K. Mascharak, Synthesis, characterization, and light-controlled antibiotic application of a composite material derived from polyurethane and silica xerogel with embedded photoactive manganese nitrosyl. Biomed. Mater. Res. B 99B, 328–337 (2011)CrossRefGoogle Scholar
  49. 49.
    J. Xu, F. Zeng, H. Wu, et al., A mitochondrial-targeting and NO-based anticancer nanosystem with enhanced photo-controllability and low dark-toxicity. J. Mater. Chem. B 3, 4904–4912 (2015)CrossRefGoogle Scholar
  50. 50.
    B. Chandra, R. Subramaniam, S. Mallik, et al., Formulation of photocleavable liposomes and the mechanism of their content release. Org. Biomol. Chem. 4, 1730–1740 (2006)CrossRefGoogle Scholar
  51. 51.
    A. Pashkovskaya, E. Kotova, Y. Zorlu, et al., Light-triggered liposomal release: membrane permeabilization by photodynamic action. Langmuir 26, 5726–5733 (2010)CrossRefGoogle Scholar
  52. 52.
    Z.Y. Zhang, B.D. Smith, Synthesis and characterization of NVOC-DOPE, a caged photoactivatable derivative of Dioleoylphosphatidylethanolamine. Bioconjug. Chem. 10, 1150–1152 (1999)CrossRefGoogle Scholar
  53. 53.
    Morgan CG, , Bisby RH, Johnson SA et al (1995) Fast solute release from photosensitive liposomes: an alternative to ‘caged’ reagents for use in biological systems. FEBS Lett. 375:113–116CrossRefGoogle Scholar
  54. 54.
    B. Bondurant, D.F. O’Brien, Photoinduced destabilization of Sterically stabilized liposomes. J. Am. Chem. Soc. 120, 13541–13542 (1998)CrossRefGoogle Scholar
  55. 55.
    A. Yavlovich, A. Singh, S. Tarasov, et al., Design of liposomes containing photopolymerizable phospholipids for triggered release of contents. J. Therm. Anal. Calorim. 98, 97–104 (2009)CrossRefGoogle Scholar
  56. 56.
    B. Khoobehi, G.A. Peyman, N. Bhatt, et al., Laser-induced experimental vascular occlusion using liposome-encapsulated ADP. Lasers Surg. Med. 12, 609–614 (1992)CrossRefGoogle Scholar
  57. 57.
    S. Mordon, T. Desmettre, J.-M. Devoisselle, et al., Thermal damage assessment of blood vessels in a hamster skin flap model by fluorescence measurement of a liposome-dye system. Lasers Surg. Med. 20, 131–141 (1997)CrossRefGoogle Scholar
  58. 58.
    D.L. Van der Meullen, P. Misra, J. Michael, et al., Laser mediated release of dye from liposomes. Photochem. Photobiol. 56, 325–332 (1992)CrossRefGoogle Scholar
  59. 59.
    Z. Li, Y. Wan, A.G. Kutateladze, Dithiane-based photolabile amphiphiles: toward photolabile liposomes. Langmuir 19, 6381–6391 (2003)CrossRefGoogle Scholar
  60. 60.
    K. Kano, Y. Tanaka, T. Ogawa, et al., Photoresponsive artificial membrane. Regulation of membrane permeability of liposomal membrane by photoreversible Cis-trans isomerization of azobenzenes. Photochem. Photobiol. 34, 323–329 (1981)CrossRefGoogle Scholar
  61. 61.
    T. Sato, T. Phoeung, P.-A. Rousseau, et al., Nonphospholipid fluid liposomes with switchable photocontrolled release. Langmuir 7, 2330–2335 (1991)CrossRefGoogle Scholar
  62. 62.
    Z.K. Cui, Y. Phoeung, P.A. Rousseau, et al., Nonphospholipid fluid liposomes with switchable photocontrolled release. Langmuir 30, 10818–10825 (2014)CrossRefGoogle Scholar
  63. 63.
    R.F. Khairutdinov, J.K. Hurst, Photocontrol of ion permeation through bilayer membranes using an amphiphilic spiropyran. Langmuir 17, 6881−6886 (2001)CrossRefGoogle Scholar
  64. 64.
    R.F. Khairutdinov, K. Giertz, J.K. Hurst, et al., Photochromism of spirooxazines in homogeneous solution and phospholipid liposomes. J. Am. Chem. Soc. 120, 12707–12713 (1998)CrossRefGoogle Scholar
  65. 65.
    C. Pidgeon, C.A. Hunt, Light sensitive liposomes. Photochem. Photobiol. 37, 491–494 (1983)CrossRefGoogle Scholar
  66. 66.
    D.F. O'Brien, B. Armitage, A. Benedicto, et al., Polymerization of preformed self-organized assemblies. Acc. Chem. Res. 31, 861–868 (1998)CrossRefGoogle Scholar
  67. 67.
    A. Yavlovich, B. Smith, K. Gupta, et al., Light-sensitive lipid-based nanoparticles for drug delivery: design principles and future considerations for biological applications. Mol. Membr. Biol. 27(7), 364–381 (2010)CrossRefGoogle Scholar
  68. 68.
    A. Yavlovich, A. Singh, R. Blumenthal, et al., A novel class of photo-triggerable liposomes containing DPPC:DC8,9PC as vehicles for delivery of doxorubcin to cells. Biochim. Biophys. Acta 1808, 117–126 (2011)CrossRefGoogle Scholar
  69. 69.
    S.J. Leung, M. Romanowski, Light-activated content release from liposomes. Theranostics 2(10), 1020–1036 (2012)CrossRefGoogle Scholar
  70. 70.
    W. Kuhn, B. Hargitay, A. Katchalsky, et al., Reversible dilation and contraction by changing the state of ionization of high-polymer acid networks. Nature 165, 514–516 (1950)CrossRefGoogle Scholar
  71. 71.
    A. Suzuki, T. Tanaka, Phase transition in polymer gels induced by visible light. Nature 346, 345–347 (1990)CrossRefGoogle Scholar
  72. 72.
    A. Suzuki, T. Ishii, Y. Maruyama, Optical switching in polymer gels. J. Appl. Phys. 80(1), 131–136 (1996)CrossRefGoogle Scholar
  73. 73.
    S.K. Samanta, A. Pal, S. Bhattacharya, et al., Carbon nanotube reinforced supramolecular gels with electrically conducting, viscoelastic and near-infrared sensitive properties. J. Mater. Chem. 20, 6881–6890 (2010)CrossRefGoogle Scholar
  74. 74.
    A. Shiotani, T. Mori, T. Niidome, et al., Stable incorporation of gold Nanorods into N-Isopropylacrylamide hydrogels and their rapid shrinkage induced by near-infrared laser irradiation. Langmuir 23, 4012–4018 (2007)CrossRefGoogle Scholar
  75. 75.
    C.-H. Zhu, Y. Lu, J. Peng, et al., Photothermally sensitive poly(N-isopropylacrylamide)/graphene oxide Nanocomposite hydrogels as remote light-controlled liquid microvalves. Adv. Funct. Mater. 22(19), 4017–4022 (2012)CrossRefGoogle Scholar
  76. 76.
    M. Wang, G. Abbineni, A. Clevenger, et al., Upconversion nanoparticles: synthesis, surface modification and biological applications. Nanomedicine 7(6), 710–729 (2011)CrossRefGoogle Scholar
  77. 77.
    B. Yan, J.-C. Boyer, D. Habault, et al., Near infrared light triggered release of biomacromolecules from hydrogels loaded with upconversion nanoparticles. J. Am. Chem. Soc. 134(40), 16558–16561 (2012)CrossRefGoogle Scholar
  78. 78.
    D.R. Griffin, A.M. Kasko, Photodegradable macromers and hydrogels for live cell encapsulation and release. J. Am. Chem. Soc. 134(31), 13103–13107 (2012)CrossRefGoogle Scholar
  79. 79.
    Y. Wei, Y. Yan, D. Pei, et al., A photoactivated prodrug. Bioorg. Med. Chem. Lett. 8, 2419–2422 (1998)CrossRefGoogle Scholar
  80. 80.
    T. Joshi, V. Pierroz, C. Mari, et al., A bis (dipyridophenazine) (2-(2-pyridyl)pyrimidine-4-carboxylicacid) ruthenium(II) complex with anticancer action upon photodeprotection. Angew. Chem. Int. Ed. 53, 2960–2963 (2014)CrossRefGoogle Scholar
  81. 81.
    A.M.L. Hossion, M. Bio, G. Nkepang, et al., Visible light controlled release of anticancer drug through double activation of prodrug. ACS Med. Chem. Lett. 4(1), 124–127 (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Anna Karewicz
    • 1
  • Dorota Lachowicz
    • 2
  • Aneta Pietraszek
    • 1
  1. 1.Department of ChemistryJagiellonian UniversityCracowPoland
  2. 2.AGH University of Science and TechnologyCracowPoland

Personalised recommendations