Advertisement

Multi-objective Visual Odometry

  • Hsiang-Jen Chien
  • Jr-Jiun Lin
  • Tang-Kai Yin
  • Reinhard Klette
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10749)

Abstract

Visual odometry (VO) has been extensively studied in the last decade. Despite a variety of implementation details, the proposed approaches share the same principle - a minimisation of a carefully chosen energy function. In this paper we review four commonly adopted energy models including perspective, epipolar, rigid, and photometric alignments, and propose a novel VO technique that unifies multiple objectives for outlier rejection and egomotion estimation to outperform mono-objective egomotion estimation. The experiments show an improvement above 50% is achievable by trading off 15% additional computational cost.

References

  1. 1.
    Scaramuzza, D., Fraundorfer, F.: Visual odometry: part I - the first 30 years and fundamentals. IEEE Robot. Autom. Mag. 18, 80–92 (2011)CrossRefGoogle Scholar
  2. 2.
    Maimone, M., Cheng, Y., Matthies, L.: Two years of visual odometry on the Mars exploration rovers. J. Field Robot. 24(3), 169–186 (2007)CrossRefGoogle Scholar
  3. 3.
    Irani, M., Anandan, P.: All about direct methods. In: Proceedings of ICCV Workshop Vision Algorithms: Theory Practice, pp. 267–277 (1999)Google Scholar
  4. 4.
    Baker, S., Mathews, I.: Equivalence and efficiency of image alignment algorithms. In: Proceedings of International Conference on Computer Vision Pattern Recognition, vol. 1, pp. 1090–1097 (2001)Google Scholar
  5. 5.
    Klein, G., Murray, D.: Parallel tracking and mapping for small AR workspaces. In: Proceedings of International Symposium on Mixed Augmented Reality, pp. 1–10 (2007)Google Scholar
  6. 6.
    Davison, A., Reid, I., Molton, N., Stasse, O.: MonoSLAM: real-time single camera SLAM. IEEE Trans. Pattern Anal. Mach. Intell. 29, 1052–1067 (2007)CrossRefGoogle Scholar
  7. 7.
    Newcombe, R., Lovegrove, S., Davison, A.: DTAM: dense tracking and mapping in real-time. In: Proceedings of IEEE International Conference on Computer Vision, pp. 2320–2327 (2011)Google Scholar
  8. 8.
    Forster, C., Pizzoli, M., Scaramuzza, D.: SVO: fast semi-direct monocular visual odometry. In: Proceedings of IEEE International Conference on Robotics Automation, pp. 15–22 (2014)Google Scholar
  9. 9.
    Engel, J., Sturm, J., Cremers, D.: Semi-dense visual odometry for a monocular camera. In: Proceedings of IEEE International Conference on Computer Vision, pp. 1449–1456 (2013)Google Scholar
  10. 10.
    Engel, J., Schöps, T., Cremers, D.: LSD-SLAM: large-scale direct monocular SLAM. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8690, pp. 834–849. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-10605-2_54 Google Scholar
  11. 11.
    Engel, J., Koltun, V., Cremers, D.: Direct sparse odometry. IEEE Trans. Pattern Anal. Mach. Intell. (99) (2017)Google Scholar
  12. 12.
    Maimone, M., Cheng, Y., Matthies, L.: Two years of visual odometry on the Mars exploration rovers. J. Field Robot. Special Issue Space Robot. Part I 24, 169–186 (2007)Google Scholar
  13. 13.
    Kitt, B., Geiger, A., Lategahn, H.: Visual odometry based on stereo image sequences with RANSAC-based outlier rejection scheme. In: Proceedings of IEEE Intelligent Vehicles Symposium, pp. 486–492 (2010)Google Scholar
  14. 14.
    Badino, H., Yamamoto, A., Kanade, T.: Visual odometry by multi-frame feature integration. In: Proceedings of International ICCV Workshop Computer Vision Autonomous Driving (2013)Google Scholar
  15. 15.
    Chien, H.-J., Geng, H., Chen, C.-Y., Klette, R.: Multi-frame feature integration for multi-camera visual odometry. In: Bräunl, T., McCane, B., Rivera, M., Yu, X. (eds.) PSIVT 2015. LNCS, vol. 9431, pp. 27–37. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-29451-3_3 CrossRefGoogle Scholar
  16. 16.
    Mur-Artal, R., Tardos, J.: ORB-SLAM2: an open-source SLAM system for monocular, stereo and RGB-D cameras. arXiv preprint arXiv:1610.06475 (2016)
  17. 17.
    Nister, D., Naroditsky, O., Bergen, J.: Visual odometry. In: Proceedings of International Conference on Computer Vision Pattern Recognition, pp. 652–659 (2004)Google Scholar
  18. 18.
    Lepetit, V., Moreno-Noguer, F., Fua, P.: EPnP: an accurate O(n) solution to the PnP problem. Int. J. Comput. Vis. 81, 155–166 (2009)CrossRefGoogle Scholar
  19. 19.
    Levenberg, K.A.: Method for the solution of certain non-linear problems in least squares. Q. Appl. Math. 2, 164–168 (1944)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press, Cambridge (2004)CrossRefMATHGoogle Scholar
  21. 21.
    Nister, D.: An efficient solution to the five-point relative pose problem. IEEE Trans. Pattern Anal. Mach. Intell. 26(6), 756–777 (2004)CrossRefGoogle Scholar
  22. 22.
    Chien, H.-J., Klette, R.: Regularised energy model for robust monocular egomotion estimation. In: Proceedings of International Joint Conference on Computer Vision Imaging Computer Graphics: Theory Applications, vol. 6, pp. 361–368 (2017)Google Scholar
  23. 23.
    Horn, B.: Closed-form solution of absolute orientation using unit quaternions. J. Opt. Soc. Am. A 4, 629–642 (1987)CrossRefGoogle Scholar
  24. 24.
    Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: the KITTI dataset. Int. J. Robot. Res. 32(11), 1231–1237 (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Hsiang-Jen Chien
    • 1
  • Jr-Jiun Lin
    • 2
  • Tang-Kai Yin
    • 2
  • Reinhard Klette
    • 1
  1. 1.Department of Electrical and Electronic Engineering, School of Engineering, Computer, and Mathematical SciencesAuckland University of TechnologyAucklandNew Zealand
  2. 2.Department of Computer Science and Information EngineeringNational University of KaohsiungKaohsiungTaiwan

Personalised recommendations