Age Estimation with Local Ternary Directional Patterns

  • Raphael Angulu
  • Jules R. Tapamo
  • Aderemi O. Adewumi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10749)


Local texture descriptors have gained significant momentum in pattern recognition community due to their robustness compared to holistic descriptors. Local ternary patterns and its variants use a static threshold to derive textural code in order to improve Local Binary Patterns robustness to noise. It is not easy to select an optimum threshold in local ternary patterns and its variants for all images in a dataset or all experimental datasets. Local directional patterns uses directional responses to encode image gradient. Apart from considering only k significant responses, local directional patterns does not include central pixel in determining image gradient. Disregarding central pixel and \(8-k\) responses could result in lose of significant discriminative information. In this paper, we propose local ternary directional patterns that combines local ternary patterns and local directional patterns in determining image gradient. In local ternary directional patterns, the threshold is determined by the neighboring pixels and both significant, less significant responses and central pixel are considered in calculating image gradient. Evaluation of local ternary directional patterns on FG-NET dataset shows its robustness in local texture description compared to local directional pattern and local ternary pattern.


Age estimation Local binary patterns Local directional patterns Local ternary directional patterns 


  1. 1.
    Ahonen, T., Hadid, A., Pietikäinen, M.: Face recognition with local binary patterns. In: Pajdla, T., Matas, J. (eds.) ECCV 2004. LNCS, vol. 3021, pp. 469–481. Springer, Heidelberg (2004). CrossRefGoogle Scholar
  2. 2.
    Ahonen, T., Hadid, A., Pietikainen, M.: Face description with local binary patterns: application to face recognition. IEEE Trans. Pattern Anal. Mach. Intell. 20, 2037–2041 (2006)CrossRefMATHGoogle Scholar
  3. 3.
    Bay, H., Tuytelaars, T., Van Gool, L.: SURF: speeded up robust features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006). CrossRefGoogle Scholar
  4. 4.
    Belhumeour, P.N., Hespanda, J.P., Kriegman, D.J.: Eigenfaces vs. Fisherfaces: recognition using class specific linear projection. IEEE Trans. Pattern Anal. Mach. Intell. 19, 711–720 (1997)CrossRefGoogle Scholar
  5. 5.
    Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, New York (2007)MATHGoogle Scholar
  6. 6.
    Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), vol. 1, pp. 886–893 (2005)Google Scholar
  7. 7.
    Gabor, D.: Theory of communication. J. Inst. Electr. Eng. 93, 429–457 (1946)Google Scholar
  8. 8.
    Gunay, A., Nabiyev, V.V.: Automatic age classification with LBP. In: 2008 23rd International Symposium on Computer and Information Sciences, ISCIS 2008, pp. 1–4. IEEE (2008)Google Scholar
  9. 9.
    Jabid, T., Kabir, M., Chae, O.: Local directional pattern (LDP) for face recognition. In: 2010 Digest of Technical Papers International Conference on Consumer Electronics (ICCE). IEEE, January 2010Google Scholar
  10. 10.
    Jabid, T., Kabir, M.H., Chae, O.: Gender classification using local directional pattern (LDP). In: 2010 20th International Conference on Pattern Recognition. IEEE, August 2010Google Scholar
  11. 11.
    Kirsch, R.A.: Computer determination of the constituent structure of biological images. Comput. Biomed. Res. 4(3), 315–328 (1971)CrossRefGoogle Scholar
  12. 12.
    Lee, S.W.: Off-line recognition of totally unconstrained handwritten numerals using multilayer cluster neural network. IEEE Trans. Pattern Anal. Mach. Intell. 18(6), 648–652 (1996)CrossRefGoogle Scholar
  13. 13.
    Lienhart, R.: Stump-based 20 x 20 gentle adaboost frontal face detector. Intel Corporation (2000)Google Scholar
  14. 14.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60, 91–110 (2004)CrossRefGoogle Scholar
  15. 15.
    Maenpaa, T., Pietikainen, M.: Texture analysis with local binary patterns. In: Handbook of Pattern Recognition and Computer Vision. World Scientific (2005)Google Scholar
  16. 16.
    Ojala, T., Pietikainen, M., Harwood, D.: A comparative study of texture measures with classification based on featured distribution. Pattern Recogn. 29, 51–59 (1996)CrossRefGoogle Scholar
  17. 17.
    Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24, 971–987 (2002)CrossRefMATHGoogle Scholar
  18. 18.
    Ojala, T., Pietikäinen, M., Mäenpää, T.: A generalized local binary pattern operator for multiresolution gray scale and rotation invariant texture classification. In: Singh, S., Murshed, N., Kropatsch, W. (eds.) ICAPR 2001. LNCS, vol. 2013, pp. 399–408. Springer, Heidelberg (2001). CrossRefGoogle Scholar
  19. 19.
    Phillips, J.P., Moon, H., Rizvi, S.A., Rauss, P.J.: The feret evaluation methodology for face recognition algorithms. IEEE Trans. Pattern Anal. Mach. Intell. 22, 1090–1104 (2000)CrossRefGoogle Scholar
  20. 20.
    Panis, G., Lanitis, A., Tsapatsoulis, N., Cootes, T.F.: Overview ofreserach on facial ageing using the FG-NET ageing database. IET Biom. 5, 37–46 (2016)CrossRefGoogle Scholar
  21. 21.
    Penev, P.S., Atick, J.J.: Local feature analysis: a general statistical theory for object representation. Netw.: Comput. Neural Syst. 7(3), 477–500 (1996)CrossRefMATHGoogle Scholar
  22. 22.
    Pratt, W.K.: Digital Image Processing. Wiley, New York (1978)MATHGoogle Scholar
  23. 23.
    Prewitt, J.M.S.: Object enhancement and extraction. In: Picture Processing and Psychopictorics. Academic Press (1970)Google Scholar
  24. 24.
    Sobel, I., Feldman, G.: A 3 x 3 isotropic gradient operator for image processing. Presented at the Stanford Artificial Intelligence Project (SAIL) (1968)Google Scholar
  25. 25.
    Tan, X., Triggs, B.: Enhanced local texture feature sets for face recognition under difficult lighting conditions. IEEE Trans. Image Process. 19, 1635–1650 (2010)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Turaga, P., Chellappa, R., Subrahmanian, V., Udrea, O.: Machine recognition of human activities: a survey. IEEE Trans. Circ. Syst. Video Technol. 18(11), 1473–1488 (2008)CrossRefGoogle Scholar
  27. 27.
    Turk, M., Pentland, A.: Eigenfaces for recognition. J. Cogn. Neurosci. 3(1), 71–86 (1991)CrossRefGoogle Scholar
  28. 28.
    Vapnik, V.: Statistical Learning Theory. Wiley, New York (1998)MATHGoogle Scholar
  29. 29.
    Yang, Z., Ai, H.: Demographic classification with local binary patterns. In: Proceedings of International Conference on Biometrics, pp. 464–473 (2007)Google Scholar
  30. 30.
    Zhang, B., Gao, Y., Zhao, S., Liu, J.: Local derivative pattern versus local binary pattern: face recognition with high-order local pattern descriptor. IEEE Trans. Image Process. 19(2), 533–544 (2010)MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Zhao, G., Pietikainen, M.: Dynamic texture recognition using local binary patterns with an application to facial expressions. IEEE Trans. Pattern Anal. Mach. Intell. 29(6), 915–928 (2007)CrossRefGoogle Scholar
  32. 32.
    Zhao, W., Chellappa, R., Phillips, P.J., Rosenfeld, A.: Face recognition. ACM Comput. Surv. 35(4), 399–458 (2003)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Mathematics, Statistics and Computer ScienceUniversity of KwaZulu-NatalDurbanSouth Africa
  2. 2.School of EngineeringUniversity of KwaZulu-NatalDurbanSouth Africa

Personalised recommendations