Advertisement

A Critical Review of the Trifocal Tensor Estimation

  • Laura F. Julià
  • Pascal Monasse
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10749)

Abstract

We explore the advantages offered by the trifocal tensor in the pose estimation of a triplet of cameras as opposed to computing the relative poses pair by pair with the fundamental matrix. Theoretically, the trinilearities characterize uniquely three corresponding image points in a tighter way than the three epipolar equations and this translates in an increasing accuracy. However, we show that this initial improvement is not enough to have a remarkable impact on the pose estimation after bundle adjustment, and the use of the fundamental matrix with image triplets remains relevant.

Keywords

Trifocal tensor Fundamental matrix Pose estimation 

References

  1. 1.
    Canterakis, N.: A minimal set of constraints for the trifocal tensor. In: Vernon, D. (ed.) ECCV 2000. LNCS, vol. 1842, pp. 84–99. Springer, Heidelberg (2000).  https://doi.org/10.1007/3-540-45054-8_6 CrossRefGoogle Scholar
  2. 2.
    Faugeras, O., Papadopoulo, T.: A nonlinear method for estimating the projective geometry of 3 views. In: Sixth International Conference on Computer Vision (IEEE), pp. 477–484 (1998).  https://doi.org/10.1109/ICCV.1998.710761
  3. 3.
    Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press, Cambridge (2004). ISBN 0521540518CrossRefMATHGoogle Scholar
  4. 4.
    Havlena, M., Torii, A., Knopp, J., Pajdla, T.: Randomized structure from motion based on atomic 3D models from camera triplets. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 2874–2881 (2009).  https://doi.org/10.1109/CVPR.2009.5206677
  5. 5.
    Levenberg, K.: A method for the solution of certain non-linear problems in least squares. Q. Appl. Math. 2(2), 164–168 (1944). http://www.jstor.org/stable/43633451 MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Ma, Y., Huang, K., Vidal, R., Košecká, J., Sastry, S.: Rank conditions on the multiple-view matrix. Int. J. Comput. Vis. 59(2), 115–137 (2004).  https://doi.org/10.1023/B:VISI.0000022286.53224.3d CrossRefGoogle Scholar
  7. 7.
    Moulon, P., Monasse, P., Marlet, R.: Adaptive structure from motion with a Contrario model estimation. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds.) ACCV 2012. LNCS, vol. 7727, pp. 257–270. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-37447-0_20 CrossRefGoogle Scholar
  8. 8.
    Moulon, P., Monasse, P., Marlet, R.: Global fusion of relative motions for robust, accurate and scalable structure from motion. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3248–3255 (2013)Google Scholar
  9. 9.
    Neitzel, F.: Generalization of total least-squares on example of unweighted and weighted 2D similarity transformation. J. Geod. 84(12), 751–762 (2010)CrossRefGoogle Scholar
  10. 10.
    Nordberg, K.: A minimal parameterization of the trifocal tensor. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1224–1230 (2009).  https://doi.org/10.1109/CVPR.2009.5206829
  11. 11.
    Papadopoulo, T., Faugeras, O.: A new characterization of the trifocal tensor. In: Burkhardt, H., Neumann, B. (eds.) ECCV 1998. LNCS, vol. 1406, pp. 109–123. Springer, Heidelberg (1998).  https://doi.org/10.1007/BFb0055662 Google Scholar
  12. 12.
    Ponce, J., Hebert, M.: Trinocular geometry revisited. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition, pp. 17–24 (2014).  https://doi.org/10.1109/CVPR.2014.10
  13. 13.
    Ressl, C.: A minimal set of constraints and a minimal parameterization for the trifocal tensor. In: The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Part 3A, vol. XXXIV. ISPRS-Comm. III Symposium, Graz, 9, p. 13 (2002)Google Scholar
  14. 14.
    Schönberger, J.L., Frahm, J.M.: Structure-from-motion revisited. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)Google Scholar
  15. 15.
    Snavely, N.: Bundler: structure from motion for unordered image collections (2010). https://www.cs.cornell.edu/~snavely/bundler/
  16. 16.
    Strecha, C., von Hansen, W., Gool, L.V., Fua, P., Thoennessen, U.: On benchmarking camera calibration and multi-view stereo for high resolution imagery. In: 2008 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8 (2008).  https://doi.org/10.1109/CVPR.2008.4587706
  17. 17.
    Torr, P., Zisserman, A.: Robust parameterization and computation of the trifocal tensor. Image Vis. Comput. 15, 591–605 (1997)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.LIGM (UMR 8049), École des Ponts, UPEChamps-sur-MarneFrance

Personalised recommendations