Automatic Brain Tumor Segmentation in Multispectral MRI Volumes Using a Random Forest Approach

  • Zoltán Kapás
  • László Lefkovits
  • David Iclănzan
  • Ágnes Győrfi
  • Barna László Iantovics
  • Szidónia Lefkovits
  • Sándor Miklós Szilágyi
  • László Szilágyi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10749)

Abstract

The development of automatic tumor detection and segmentation procedures enables the computers to preprocess huge sets of MRI records and draw the attention of medical staff upon suspected positive cases. This paper proposes a machine learning solution based on binary decision trees and random forest technique, trained to provide accurate segmentation of brain tumors from multispectral MRI volumes. The current version of our system was trained and tested using all 220 high-grade tumor volumes from the MICCAI BRATS 2016 database. Image records were preprocessed to attenuate the effect of relative intensities in the MRI data, and to extend the feature set with neighborhood information of each voxel. The output of the random forest is also validated for each voxel, according to labels given to neighbor voxels. The achieved accuracy is characterized by an overall mean Dice score of 80.1%, sensitivity 83.1%, and specificity 98.6%. The proposed method is likely to detect all gliomas of 2 cm diameter.

Keywords

Decision tree Random forest Machine learning Image segmentation Magnetic resonance imaging 

References

  1. 1.
    Gordillo, N., Montseny, E., Sobrevilla, P.: State of the art survey on MRI brain tumor segmentation. Magn. Res. Imag. 31, 1426–1438 (2013)CrossRefGoogle Scholar
  2. 2.
    Vovk, U., Pernus̆, F., Likar, B.: A review of methods for correction of intensity inhomogeneity in MRI. IEEE Trans. Med. Imag. 26, 405–421 (2007)CrossRefGoogle Scholar
  3. 3.
    Asman, A.J., Landman, B.A.: Out-of-atlas labeling: a multi-atlas approach to cancer segmentation. In: 9th IEEE International Symposium on Biomedical Imaging, pp. 1236–1239. IEEE Press, New York (2012)Google Scholar
  4. 4.
    Ghanavati, S., Li, J., Liu, T., Babyn, P.S., Doda, W., Lampropoulos, G.: Automatic brain tumor detection in magnetic resonance images. In: 9th IEEE International Symposium on Biomedical Imaging, pp. 574–577. IEEE Press, New York (2012)Google Scholar
  5. 5.
    Hamamci, A., Kucuk, N., Karamam, K., Engin, K., Unal, G.: Tumor-cut: segmentation of brain tumors on contranst enhanced MR images for radiosurgery applications. IEEE Trans. Med. Imag. 31, 790–804 (2012)CrossRefGoogle Scholar
  6. 6.
    Sachdeva, J., Kumar, V., Gupta, I., Khandelwal, N., Ahuja, C.K.: A novel content-based active contour model for brain tumor segmentation. Magn. Res. Imag. 30, 694–715 (2012)CrossRefGoogle Scholar
  7. 7.
    Njeh, I., Sallemi, L., Ben Ayed, I., Chtourou, K., Lehericy, S., Galanaud, D., Ben Hamida, A.: 3D multimodal MRI brain glioma tumor and edema segmentation: a graph cut distribution matching approach. Comput. Med. Imag. Graph. 40, 108–119 (2015)CrossRefGoogle Scholar
  8. 8.
    Zhang, N., Ruan, S., Lebonvallet, S., Liao, Q., Zhou, Y.: Kernel feature selection to fuse multi-spectral MRI images for brain tumor segmentation. Comput. Vis. Image Underst. 115, 256–269 (2011)CrossRefGoogle Scholar
  9. 9.
    Tustison, N.J., Shrinidhi, K.L., Wintermark, M., Durst, C.R., Kandel, B.M., Gee, J.C., Grossman, M.C., Avants, B.B.: Optimal symmetric multimodal templates and concatenated random forests for supervised brain tumor segmentation (simplified) with ANTsR. Neuroinformatics 13, 209–225 (2015)CrossRefGoogle Scholar
  10. 10.
    Szilágyi, L., Lefkovits, L., Iantovics, B., Iclănzan, D., Benyó, B.: Automatic brain tumor segmentation in multispectral MRI volumetric records. In: Arik, S., Huang, T., Lai, W.K., Liu, Q. (eds.) ICONIP 2015. LNCS, vol. 9492, pp. 174–181. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-26561-2_21 CrossRefGoogle Scholar
  11. 11.
    Kanas, V.G., Zacharaki, E.I., Davatzikos, C., Sgarbas, K.N., Megalooikonomou, V.: A low cost approach for brain tumor segmentation based on intensity modeling and 3D random walker. Biomed. Sig. Process. Control 22, 19–30 (2015)CrossRefGoogle Scholar
  12. 12.
    Havaei, M., Davy, A., Warde-Farley, D., Biard, A., Courville, A., Bengio, Y., Pal, C., Jodoin, P.M., Larochelle, H.: Brain tumor segmentation with deep neural networks. Med. Image Anal. 35, 18–31 (2017)CrossRefGoogle Scholar
  13. 13.
    Pereira, S., Pinto, A., Alves, V., Silva, C.A.: Brain tumor segmentation using convolutional neural networks in MRI images. IEEE Trans. Med. Imag. 35, 1240–1251 (2016)CrossRefGoogle Scholar
  14. 14.
    Menze, B.H., van Leemput, K., Lashkari, D., Riklin-Raviv, T., Geremia, E., Alberts, E., et al.: A generative probabilistic model and discriminative extensions for brain lesion segmentation - with application to tumor and stroke. IEEE Trans. Med. Imag. 35, 933–946 (2016)CrossRefGoogle Scholar
  15. 15.
    Juan-Albarracín, J., Fuster-Garcia, E., Manjón, J.V., Robles, M., Aparici, F., Martí-Bonmatí, L., García Gómez, J.M.: Automated glioblastoma segmentation based on a multiparametric structured unsupervised classification. PLoS ONE 10(5), e0125143 (2015)CrossRefGoogle Scholar
  16. 16.
    Islam, A., Reza, S.M.S., Iftekharuddin, K.M.: Multifractal texture estimation for detection and segmentation of brain tumors. IEEE Trans. Biomed. Eng. 60, 3204–3215 (2013)CrossRefGoogle Scholar
  17. 17.
    Shin, H.C., Roth, H.R., Gao, M.C., Lu, L., Xu, Z.Y., Nogues, I., Yao, J.H., Mollura, D., Summers, R.M.: Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE Trans. Med. Imag. 35(5), 1285–1298 (2016)CrossRefGoogle Scholar
  18. 18.
    Huang, M.Y., Yang, W., Wu, Y., Jiang, J., Chen, W.F., Feng, Q.J.: Brain tumor segmentation based on local independent projection-based classification. IEEE Trans. Biomed. Eng. 61(10), 2633–2645 (2014)CrossRefGoogle Scholar
  19. 19.
    Iglesias, J.E., Sabuncu, M.R.: Multi-atlas segmentation of biomedical images: a survey. Med. Imag. Anal. 24(1), 205–219 (2015)CrossRefGoogle Scholar
  20. 20.
    Kapás, Z., Lefkovits, L., Szilágyi, L.: Automatic detection and segmentation of brain tumor using random forest approach. In: Torra, V., Narukawa, Y., Navarro-Arribas, G., Yañez, C. (eds.) MDAI 2016. LNCS (LNAI), vol. 9880, pp. 301–312. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-45656-0_25 CrossRefGoogle Scholar
  21. 21.
    Menze, B.H., Jakab, A., Bauer, S., Kalpathy-Cramer, J., Farahani, K., Kirby, J., et al.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imag. 34, 1993–2024 (2015)CrossRefGoogle Scholar
  22. 22.
    Akers, S.B.: Binary decision diagrams. IEEE Trans. Comput. C–27, 509–516 (1978)CrossRefMATHGoogle Scholar
  23. 23.
    Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001)CrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Zoltán Kapás
    • 1
  • László Lefkovits
    • 1
  • David Iclănzan
    • 1
  • Ágnes Győrfi
    • 1
  • Barna László Iantovics
    • 2
  • Szidónia Lefkovits
    • 2
  • Sándor Miklós Szilágyi
    • 2
  • László Szilágyi
    • 1
    • 3
  1. 1.Computational Intelligence Research GroupSapientia - Hungarian Science University of TransylvaniaTîrgu MureşRomania
  2. 2.Department of InformaticsPetru Maior UniversityTîrgu MureşRomania
  3. 3.Department of Control Engineering and Information TechnologyBudapest University of Technology and EconomicsBudapestHungary

Personalised recommendations