Climate Change in the Global South: Trends and Spatial Patterns
- 5 Mentions
- 1k Downloads
Abstract
During the last few decades, research on climate change has increased tremendously mainly due to the increasing awareness of the buildup of greenhouse gases. In this regard, it is imperative to understand the regional level manifestations of climate change for the more densely populated and less-explored, fast-developing regions of the Global South. There remains a great amount of uncertainty for these regions due to limited spatial and temporal spread of climate data. Based on the analysis of long term climate records, the majority of the Global south is extremely vulnerable and under-prepared for the impending impacts of climate change. Some of the specific impacts include decreasing trends in precipitation accompanied by increasing trends in temperatures and extreme weather events. Specifically, some areas, such as small low-lying islands in the Pacific, are more vulnerable to climate change and the impacts resulting from sea level rise. Furthermore, the concentration of population along the coast with limited access to resources and poor infrastructure makes this region more vulnerable. These impacts will be disproportionately burdened on women and girls, due to high gender inequality and their high representation below the poverty line.
References
- Achard, F., Eva, H. D., Stibig, H. J., Mayaux, P., Gallego, J., Richards, T., et al. (2002). Determination of deforestation rates of the world’s humid tropical forests. Science, 297(5583), 999–1002.CrossRefGoogle Scholar
- Barros, V. R., Doyle, M., & Camilloni, I. (2008). Precipitation trends in southeastern South America: Relationship with ENSO phases and the low-level circulation. Theoretical and Applied Climatology, 93, 19–33.CrossRefGoogle Scholar
- Baumgardner, D., Raga, G. B., & Muhlia, A. (2004). Evidence for the formation of CCN by photochemical processes in Mexico City. Atmospheric Environment, 38, 357–367.CrossRefGoogle Scholar
- Becker, A., Finger, P., Meyer-Christoffer, A., Rudolf, B., & Ziese, M. (2011). GPCC full data reanalysis version 7.0 at 0.5: Monthly land-surface precipitation from raingauges built on GTS-based and historic data.Google Scholar
- Biasutti, M., & Sobel, A. H. (2009). Delayed seasonal cycle and African monsoon in a warmer climate. Geophysical Research Letters, 36, L23707.CrossRefGoogle Scholar
- Bonan, G. B. (2008). Forests and climate change: Forcings, feedbacks, and the climate benefits of forests. Science, 320(5882), 1444–1449.CrossRefGoogle Scholar
- Bousquet, P. (2011). Source attribution of the changes in atmospheric methane for 2006–2008. Atmospheric Chemistry and Physics, 10, 27603–27630.Google Scholar
- Bracegirdle, T. J., Shuckburgh, E., Sallee, J.-B., Wang, Z., Meijers, A. J. S., Bruneau, N., et al. (2013). Assessment of surface winds over the Atlantic, Indian, and Pacific Ocean sectors of the Southern Ocean in CMIP5 models: historical bias, forcing response, and state dependence. Journal of Geophysical Research: Atmospheres, 118(2), 547–562.Google Scholar
- Carslaw, K. S., Boucher, O., Spracklen, D. V., Mann, G. W., Rae, J. G. L., Woodward, S., et al. (2010). A review of natural aerosol interactions and feedbacks within the Earth system. Atmospheric Chemistry and Physics, 10(4), 1701–1737.CrossRefGoogle Scholar
- Chagnon, F. J. F., & Bras, R. L. (2005). Contemporary climate change in the Amazon. Geophysical Research Letters, 32, L13703. https://doi.org/10.1029/2005GL022722.
- Choi, G., Collins, D., Ren, G., Trewin, B., Baldi, M., Fukuda, Y., et al. (2009). Changes in means and extreme events of temperature and precipitation in the Asia-Pacific Network region, 1955–2007. International Journal of Climatology, 29(13), 1906–1925.CrossRefGoogle Scholar
- Christensen, J. H., Kanikicharla, K. K., Marshall, G., & Turner, J. (2013). Climate phenomena and their relevance for future regional climate change. In T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, et al. (Eds.), Climate change 2013: The physical science basis contribution of working group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 1217–1308). Cambridge: Cambridge University Press.Google Scholar
- Comarazamy, D. E., & Gonzalez, J. E. (2011). Regional long-term climate change (1950–2000) in the midtropical Atlantic and its impacts on the hydrological cycle of Puerto Rico. Journal of Geophysical Research Atmospheres, 116. https://doi.org/10.1029/2010jd015414.
- Conway, D., Hanson, C. E., Doherty, R., & Persechino, A. (2007). GCM simulations of the Indian Ocean dipole influence on East African rainfall: Present and future. Geophysical Research Letters, 34(3), L03705.CrossRefGoogle Scholar
- de Miranda, R. M., Andrade, M. D., Worobiec, A., & Van Grieken, R. (2002). Characterisation of aerosol particles in the Sao Paulo Metropolitan Area. Atmospheric Environment, 36, 345–352.CrossRefGoogle Scholar
- Defries, R. S., Bounoua, L., & James Collatz, G. (2002). Human modification of the landscape and surface climate in the next fifty years. Global Change Biology, 8(5), 438–458.CrossRefGoogle Scholar
- Deser, C., Phillips, A., Bourdette, V., & Teng, H. (2012). Uncertainty in climate change projections: the role of internal variability. Climate Dynamics, 38(3-4), 527–546.CrossRefGoogle Scholar
- Dlugokencky, E., et al. (2009). Observational constraints on recent increases in the atmospheric CH4 burden. Geophysical Research Letters, 36, L18803.CrossRefGoogle Scholar
- Donat, M. G., Alexander, L. V., Yang, H., Durre, I., Vose, R., Dunn, R. J. H., et al. (2013a). Updated analyses of temperature and precipitation extreme indices since the beginning of the twentieth century: the HadEX2 dataset. Journal of Geophysical Research: Atmospheres, 118(5), 2098–2118.Google Scholar
- Donat, M. G., Alexander, L. V., Yang, H., Durre, I., Vose, R., & Caesar, J. (2013b). Global land-based datasets for monitoring climatic extremes. Bulletin of the American Meteorological Society, 94(7), 997–1006.CrossRefGoogle Scholar
- Douglas, E. M., Wood, S., Sebastian, K., Vörösmarty, C. J., Chomitz, K. M., & Tomich, T. P. (2007). Policy implications of a pan-tropic assessment of the simultaneous hydrological and biodiversity impacts of deforestation. Water Resources Management, 21(1), 211–232.CrossRefGoogle Scholar
- Erel, Y. G., Dayan, U., Rabi, R., Rudich, Y., & Stein, M. (2006). Trans boundary transport of pollutants by atmospheric mineral dust. Environmental Science & Technology, 40, 2996–3005.CrossRefGoogle Scholar
- Exbrayat, J.-F., & Williams, M. (2015). Quantifying the net contribution of the historical Amazonian deforestation to climate change. Geophysical Research Letters, 42(8), 2968–2976.CrossRefGoogle Scholar
- FAO. (2010). Global forest resources assessment 2010 main report. FAO Forestry Paper 163.Google Scholar
- Fyfe, J. C. (2003). Separating extratropical zonal wind variability and mean change. Journal of Climate, 16(5), 863–874.CrossRefGoogle Scholar
- Ghose, M. K., Paul, R., & Banerjee, R. K. (2005). Assessment of the status of Urban air pollution and its impact on human health in the city of Kolkata. Environmental Monitoring and Assessment, 108, 151–167.CrossRefGoogle Scholar
- Gillett, N. P., Kell, T. D., & Jones, P. D. (2006). Regional climate impacts of the Southern Annular Mode. Geophysical Research Letters, 33(23), L23704.CrossRefGoogle Scholar
- Giorgi, F., Im, E.-S., Coppola, E., Diffenbaugh, N. S., Gao, X. J., Mariotti, L., et al. (2011). Higher hydroclimatic intensity with global warming. Journal of Climate, 24(20), 5309–5324.CrossRefGoogle Scholar
- Goswami, B. N., Venugopal, V., Sengupta, D., Madhusoodanan, M. S., & Xavier, P. K. (2006). Increasing trend of extreme rain events over India in a warming environment. Science, 314(5804), 1442–1445.CrossRefGoogle Scholar
- Hartmann, D. L., Klein Tank, A. M. G., Rusticucci, M., Alexander, L. V., Brönnimann, S., Charabi, Y., et al. (2013). Observations: Atmosphere and surface. In T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, et al. (Eds.), Climate change 2013: The physical science basis contribution of working group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.Google Scholar
- Jhajharia, D., Shrivastava, S., Sarkar, D., & Sarkar, S. (2009). Temporal characteristics of pan evaporation trends under humid conditions of northeast India. Agriculture Forest Meteorology, 336, 61–73.Google Scholar
- Jiang, Z., Song, J., Li, L., Chen, W., Wang, Z., & Wang, J. (2012). Extreme climate events in China: IPCC-AR4 model evaluation and projection. Climatic Change, 110(1-2), 385–401.CrossRefGoogle Scholar
- Jonsson, P. (2004). Vegetation as an urban climate control in the subtropical city of Gaborone, Botswana. International Journal of Climatology, 24, 1307–1322.CrossRefGoogle Scholar
- Juma, M. (2010). Security and regional cooperation in Africa: how can we make Africa’s security architecture fit for the new challenges. In Climate change resources migration: Securing Africa in an uncertain climate. Cape Town: Heinrich Böll Foundation Southern Africa.Google Scholar
- Jung, M., Reichstein, M., Ciais, P., Seneviratne, S. I., Sheffield, J., Goulden, M. L., et al. (2010). Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature, 467(7318), 951–954.CrossRefGoogle Scholar
- Karl, T. R., Arguez, A., Huang, B., Lawrimore, J. H., McMahon, J. R., Menne, M. J., et al. (2015). Possible artifacts of data biases in the recent global surface warming hiatus. Science, 348, 1469.Google Scholar
- Kaufmann, R. K., Kauppi, H., Mann, M. L., & Stock, J. H. (2011). Reconciling anthropogenic climate change with observed temperature 1998–2008. Proceedings of the National Academy of Sciences of the United States of America, 108, 11790–11793.CrossRefGoogle Scholar
- Koomey, J. (2015). Why we can’t ditch the 2 C warming goal. Ecowatch Blog. Retrieved July 10, 2015, from http://ecowatch.com/2014/10/27/2-c-warming-limit-climate-change/2/
- Kosaka, Y., & Xie, S.-P. (2013). Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature, 501(7467), 403.CrossRefGoogle Scholar
- Krishna Moorthy, K., Suresh Babu, S., Manoj, M. R., & Satheesh, S. K. (2013). Buildup of aerosols over the Indian region. Geophysical Research Letters, 40(5), 1011–1014.CrossRefGoogle Scholar
- Krishnan, R., & Sugi, M. (2003). Pacific decadal oscillation and variability of the Indian summer monsoon rainfall. Climate Dynamics, 21(3-4), 233–242.CrossRefGoogle Scholar
- Kueppers, L. M., Snyder, M. A., Sloan, L. C., Cayan, D., Jin, J., Kanamaru, H., et al. (2008). Seasonal temperature responses to land use change in the western United States. Global Planetary Change, 60, 250–264.CrossRefGoogle Scholar
- Kumar, K. K., Rajagopalan, B., Hoerling, M., Bates, G., & Cane, M. (2006). Unraveling the mystery of Indian monsoon failure during El Niño. Science, 314(5796), 115–119.CrossRefGoogle Scholar
- Lee, T.-c., Chan, K.-y., Chan, H.-s., & Kok, M.-h. (2011). Projections of extreme rainfall in Hong Kong in the 21st century. Acta Meteorologica Sinica, 25, 691–709.CrossRefGoogle Scholar
- Lejeune, Q., Davin, E. L., Guillod, B. P., & Seneviratne, S. I. (2015). Influence of Amazonian deforestation on the future evolution of regional surface fluxes, circulation, surface temperature and precipitation. Climate Dynamics, 44(9-10), 2769–2786.CrossRefGoogle Scholar
- Li, C. S., & Lin, C. H. (2002). PM1/PM2.5/PM10 characteristics in the urban atmosphere of Taipei. Aerosol Science and Technology, 36, 469–473.CrossRefGoogle Scholar
- Lindén, J. (2011). Nocturnal Cool Island in the Sahelian city of Ouagadougou, Burkina Faso. International Journal of Climatology, 31, 605–620. https://doi.org/10.1002/joc.2069.CrossRefGoogle Scholar
- Lobell, D. B., Bonfils, C. J., Kueppers, L. M., & Snyder, M. A. (2008). Irrigation cooling effect on temperature and heat index extremes. Geophysical Research Letters, 35, L09705. https://doi.org/10.1029/2008GL034145.CrossRefGoogle Scholar
- Lobell, D., Bala, G., Mirin, A., Phillips, T., Maxwell, R., & Rotman, D. (2009). Regional differences in the influence of irrigation on climate. Journal of Climate, 22(8), 2248–2255.CrossRefGoogle Scholar
- Mahmood, R., Pielke, R. A., Hubbard, K. G., Niyogi, D., Dirmeyer, P. A., McAlpine, C., et al. (2014). Land cover changes and their biogeophysical effects on climate. International Journal of Climatology, 34(4), 929–953.CrossRefGoogle Scholar
- Marengo, J. A., Liebmann, B., Grimm, A. M., Misra, V., Silva Dias, P. L., Cavalcanti, I. F. A., et al. (2012). Recent developments on the South American monsoon system. International Journal of Climatology, 32(1), 1–21.CrossRefGoogle Scholar
- Marengo, J. A. (2004). Interdecadal variability and trends of rainfall across the Amazon basin. Theoretical and Applied Climatology, 78(1–3), 79–96.Google Scholar
- May, W. (2011). The sensitivity of the Indian summer monsoon to a global warming of 2 C with respect to pre-industrial times. Climate Dynamics, 37(9-10), 1843–1868.CrossRefGoogle Scholar
- Mazzeo, N. A., & Venega, L. E. (2004). Some aspects of air pollution in Buenos Aires city. International Journal of Environment and Pollution, 22, 365–378.CrossRefGoogle Scholar
- Meehl, G. A., Covey, C., Delworth, T., Latif, M., McAvaney, B., Mitchell, J., et al. (2007). The WCRP CMIP3 multi-model dataset: A new era in climate change research. Bulletin of the American Meteorological Society, 88, 1383–1394.CrossRefGoogle Scholar
- Meehl, G. A., & Arblaster, J. M. (1998). The Asian-Australian monsoon and el niño-southern oscillation in the NCAR climate system model*. Journal of Climate, 11(6), 1356–1385.CrossRefGoogle Scholar
- Meehl, G. A., et al. (2011). Model-based evidence of deep-ocean heat uptake during surface-temperature hiatus periods. Nature Climate Change 1.7, 360.CrossRefGoogle Scholar
- Meehl, G. A., Hu, A., Arblaster, J., Fasullo, J., & Trenberth, K. E. (2013). Externally forced and internally generated decadal climate variability associated with the Interdecadal Pacific oscillation. Journal of Climate. https://doi.org/10.1175/JCLI-D-12-00548.1.
- Mishra, V., Ganguly, A. R., Nijssen, B., & Lettenmaier, D. P. (2015). Changes in observed climate extremes in global urban areas. Environmental Research Letters, 10(2), 024005.CrossRefGoogle Scholar
- Moss, R. H., Edmonds, J. A., Hibbard, K. A., Manning, M. R., Rose, S. K., Van Vuuren, D. P., et al. (2010). The next generation of scenarios for climate change research and assessment. Nature, 463(7282), 747–756.CrossRefGoogle Scholar
- Neelin, J. D., Münnich, M., Hui, S., Meyerson, J. E., & Holloway, C. E. (2006). Tropical drying trends in global warming models and observations. Proceedings of the National Academy of Sciences, 103(16), 6110–6115.CrossRefGoogle Scholar
- Nicholson, S. E., & Kim, J. (1997). The relationship of the El Niño–Southern Oscillation to African rainfall. International Journal of Climatology, 17, 117–135.CrossRefGoogle Scholar
- O’Shea, P. M., Roy, S. S., & Singh, R. B. (2015). Diurnal variations in the spatial patterns of air pollution across Delhi. Theoretical and Applied Climatology, 124, 609. https://doi.org/10.1007/s00704-015-1441-y.CrossRefGoogle Scholar
- Piao, S., Ciais, P., Huang, Y., Shen, Z., Peng, S., Li, J., Zhou, L., et al. (2010). The impacts of climate change on water resources and agriculture in China. Nature, 467(7311), 43–51.CrossRefGoogle Scholar
- Population Reference Bureau. (2015). World population data sheet 2014. Retrieved June 24, 2015, from http://www.prb.org/pdf14/2014-world-population-data-sheet_eng.pdf
- Quintana, J. M., & Aceituno, P. (2012). Changes in the rainfall regime along the extratropical west coast of South America (Chile): 30–43oS. Atmosfera, 25, 1–22.Google Scholar
- Quintana-Gomez, R. A. (1999). Trends of maximum and minimum temperatures in northern South America. Journal of Climate, 12(7), 2104–2112.CrossRefGoogle Scholar
- Ren, G. Y., Chu, Z. Y., Chen, Z. H., & Ren, Y. Y. (2007). Implications of temporal change in urban heat island intensity observed at Beijing and Wuhan stations. Geophysical Research Letters, 34, L05711.CrossRefGoogle Scholar
- Rigby, M., et al. (2008). Renewed growth of atmospheric methane. Geophysical Research Letters, 35, L22805.Google Scholar
- Roderick, M. L., Rotstayn, L. D., Farquhar, G. D., & Hobbins, M. T. (2007). On the attribution of changing pan evaporation. Geophysical Research Letters, 34, L17403.CrossRefGoogle Scholar
- Rohde, R., Muller, R. A., Jacobsen, R., Muller, E., Perlmutter, S., Rosenfeld, A., et al. (2013). A new estimate of the average Earth surface land temperature spanning 1753 to 2011. Geoinformation Geostatistics: An Overview, 1. https://doi.org/10.4172/gigs.1000101.
- Schnadt Poberaj, C., Staehelin, J., Brunner, D., Thouret, V., De Backer, H., & Stübi, R. (2009). Long-term changes in UT/LS ozone between the late 1970s and the 1990s deduced from the GASP and MOZAIC aircraft programs and from ozonesondes. Atmospheric Chemistry and Physics, 9(14), 5343–5369.CrossRefGoogle Scholar
- Sen Roy, S., & Balling, R. C. (2005). Analysis of trends in maximum and minimum temperature, diurnal temperature range, and cloud cover over India. Geophysical Research Letters, 32, L12702.Google Scholar
- Sen Roy, S., Mahmood, R., Niyogi, D., Lei, M., Foster, S. A., Hubbard, K. G., et al. (2007). Impacts of the agricultural Green Revolution–induced land use changes on air temperatures in India. Journal of Geophysical Research: Atmospheres, 112, D21.Google Scholar
- Sen Roy, S., Singh, R. B., & Kumar, M. (2011). An analysis of local-spatial temperatures patterns in the Delhi metropolitan area. Physical Geography, 32, 114–138.CrossRefGoogle Scholar
- Sen Roy, S. (2006). The impacts of ENSO, PDO, and local SSTs on winter precipitation in India. Physical Geography, 27(5), 464–474.CrossRefGoogle Scholar
- Sen Roy, S. (2009). A spatial analysis of extreme hourly precipitation patterns in India. International Journal of Climatology, 29(3), 345–355.CrossRefGoogle Scholar
- Sen Roy, S., & Rouault, M. (2013). Spatial patterns of seasonal scale trends in extreme hourly precipitation in South Africa. Applied Geography, 39, 151–157.CrossRefGoogle Scholar
- Seneviratne, S. I., Nicholls, N., Easterling, D., Goodess, C. M., Kanae, S., Kossin, J., et al. (2012). Changes in climate extremes and their impacts on the natural physical environment. In C. B. Field et al. (Eds.), Managing the risks of extreme events and disasters to advance climate change adaptation: A special report of working groups I and II of the Intergovernmental Panel on Climate Change (IPCC) (pp. 109–230). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
- Seth, A., Rojas, M., & Rauscher, S. A. (2010). CMIP3 projected changes in the annual cycle of the South American Monsoon. Climatic Change, 98(3-4), 331–357.CrossRefGoogle Scholar
- Sham, S. (1987). The urban heat island – its concept and application to Kuala Lumpur. In S. Sham (Ed.), Urbanisation and the atmospheric environment in the low tropics: Experiences from the Kelang Valley Region, Malaysia. Malaysia: Pernerbit University Kebangsaan.Google Scholar
- Solomon, S., Daniel, J. S., Neely, R. R., Vernier, J. P., Dutton, E. G., & Thomason, L. W. (2011). The persistently variable “background” stratospheric aerosol layer and global climate change. Science, 333, 866–870.Google Scholar
- Solomon, S., Rosenlof, K. H., Portmann, R. W., Daniel, J. S., Davis, S. M., Sanford, T. J., et al. (2010). Contributions of stratospheric water vapor to decadal changes in the rate of global warming. Science, 327, 1219–1223.Google Scholar
- Stern, N. (2007). The economics of climate change: The Stern review. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
- Stocker, T. F., Qin, D., Plattner, G.-K., Alexander, L. V., Allen, S. K., Bindoff, N. L., et al. (2013). Technical summary. In T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, & P. M. Midgley (Eds.), Climate change 2013: The physical science basis contribution of working group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.Google Scholar
- Tanner, P. A., & Law, P. T. (2003). Organic acids in the atmosphere and bulk deposition of Hong Kong. Water Air and Soil Pollution, 142, 279–297.CrossRefGoogle Scholar
- Tans, P. (2009). An accounting of the observed increase in oceanic and atmospheric CO2 and an outlook for the future. Oceanography, 22, 26–35.CrossRefGoogle Scholar
- Thompson, L. G., et al. (2009). Glacier loss on Kilimanjaro continues unabated. Proceedings of the National Academy of Sciences 106.47: 19770–19775.Google Scholar
- Trenberth, K. E., Jones, P. D., Ambenje, P., Bojariu, R., Easterling, D., Klein Tank, A., et al. (2007). Observations: Surface and atmospheric climate change. In S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, & H. L. Miller (Eds.), Climate change 2007: The physical science basis. Contribution of working group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.Google Scholar
- Trenberth, K. E., & Fasullo, J. T. (2013). An apparent hiatus in global warming? Earth’s Future, 1(1), 19–32.CrossRefGoogle Scholar
- Turner, A. G., & Annamalai, H. (2012). Climate change and the South Asian summer monsoon. Nature Climate Change, 2(8), 587–595.CrossRefGoogle Scholar
- United Nations. (2016). SDGs: Sustainable development knowledge platform. United Nations. Retrieved December 29, 2016, from https://sustainabledevelopment.un.org/sdgs
- Villar, J. C. E., Guyot, J. L., Ronchail, J., Cochonneau, G., Filizola, N., Fraizy, P., et al. (2009). Contrasting regional discharge evolutions in the Amazon basin (1974–2004). Journal of Hydrology, 375(3), 297–311.CrossRefGoogle Scholar
- Vose, R. S., Easterling, D. R., & Gleason, B. (2005). Maximum and minimum temperature trends for the globe: An update through 2004. Geophysical Research Letters, 32, L23822.CrossRefGoogle Scholar
- WHO. (2015). 7 million premature deaths annually linked to air pollution. Retrieved June 26, 2015, from http://www.who.int/mediacentre/news/releases/2014/air-pollution/en/
- Wild, M., Grieser, J., & Schaer, C. (2008). Combined surface solar brightening and increasing greenhouse effect support recent intensification of the global land-based hydrological cycle. Geophysical Research Letters, 35, L17706.CrossRefGoogle Scholar
- Williams, C. A., & Hanan, N. P. (2011). ENSO and IOD teleconnections for African ecosystems: evidence of destructive interference between climate oscillations. Biogeosciences, 8(1), 27–40.CrossRefGoogle Scholar
- World Bank. (2015). Little data book on climate change: Supplemental data. Retrieved June 29, 2015, from http://data.worldbank.org/data-catalog/ldbcc-supplemental
- Yan, Z., Li, Z., Li, Q., & Jones, P. (2010). Effects of site change and urbanisation in the Beijing temperature series 1977–2006. International Journal of Climatology, 30, 1226–1234.CrossRefGoogle Scholar
- Zhang, Y., Liu, C., Tang, Y., & Yang, Y. (2007). Trends in pan evaporation and reference and actual evapotranspiration across the Tibetan Plateau. Journal of Geophysical Research: Atmospheres, 112(D12).Google Scholar