Advertisement

Climate Change in the Global South: Trends and Spatial Patterns

  • Shouraseni Sen Roy
Chapter
Part of the Springer Climate book series (SPCL)

Abstract

During the last few decades, research on climate change has increased tremendously mainly due to the increasing awareness of the buildup of greenhouse gases. In this regard, it is imperative to understand the regional level manifestations of climate change for the more densely populated and less-explored, fast-developing regions of the Global South. There remains a great amount of uncertainty for these regions due to limited spatial and temporal spread of climate data. Based on the analysis of long term climate records, the majority of the Global south is extremely vulnerable and under-prepared for the impending impacts of climate change. Some of the specific impacts include decreasing trends in precipitation accompanied by increasing trends in temperatures and extreme weather events. Specifically, some areas, such as small low-lying islands in the Pacific, are more vulnerable to climate change and the impacts resulting from sea level rise. Furthermore, the concentration of population along the coast with limited access to resources and poor infrastructure makes this region more vulnerable. These impacts will be disproportionately burdened on women and girls, due to high gender inequality and their high representation below the poverty line.

References

  1. Achard, F., Eva, H. D., Stibig, H. J., Mayaux, P., Gallego, J., Richards, T., et al. (2002). Determination of deforestation rates of the world’s humid tropical forests. Science, 297(5583), 999–1002.CrossRefGoogle Scholar
  2. Barros, V. R., Doyle, M., & Camilloni, I. (2008). Precipitation trends in southeastern South America: Relationship with ENSO phases and the low-level circulation. Theoretical and Applied Climatology, 93, 19–33.CrossRefGoogle Scholar
  3. Baumgardner, D., Raga, G. B., & Muhlia, A. (2004). Evidence for the formation of CCN by photochemical processes in Mexico City. Atmospheric Environment, 38, 357–367.CrossRefGoogle Scholar
  4. Becker, A., Finger, P., Meyer-Christoffer, A., Rudolf, B., & Ziese, M. (2011). GPCC full data reanalysis version 7.0 at 0.5: Monthly land-surface precipitation from raingauges built on GTS-based and historic data.Google Scholar
  5. Biasutti, M., & Sobel, A. H. (2009). Delayed seasonal cycle and African monsoon in a warmer climate. Geophysical Research Letters, 36, L23707.CrossRefGoogle Scholar
  6. Bonan, G. B. (2008). Forests and climate change: Forcings, feedbacks, and the climate benefits of forests. Science, 320(5882), 1444–1449.CrossRefGoogle Scholar
  7. Bousquet, P. (2011). Source attribution of the changes in atmospheric methane for 2006–2008. Atmospheric Chemistry and Physics, 10, 27603–27630.Google Scholar
  8. Bracegirdle, T. J., Shuckburgh, E., Sallee, J.-B., Wang, Z., Meijers, A. J. S., Bruneau, N., et al. (2013). Assessment of surface winds over the Atlantic, Indian, and Pacific Ocean sectors of the Southern Ocean in CMIP5 models: historical bias, forcing response, and state dependence. Journal of Geophysical Research: Atmospheres, 118(2), 547–562.Google Scholar
  9. Carslaw, K. S., Boucher, O., Spracklen, D. V., Mann, G. W., Rae, J. G. L., Woodward, S., et al. (2010). A review of natural aerosol interactions and feedbacks within the Earth system. Atmospheric Chemistry and Physics, 10(4), 1701–1737.CrossRefGoogle Scholar
  10. Chagnon, F. J. F., & Bras, R. L. (2005). Contemporary climate change in the Amazon. Geophysical Research Letters, 32, L13703. https://doi.org/10.1029/2005GL022722.
  11. Choi, G., Collins, D., Ren, G., Trewin, B., Baldi, M., Fukuda, Y., et al. (2009). Changes in means and extreme events of temperature and precipitation in the Asia-Pacific Network region, 1955–2007. International Journal of Climatology, 29(13), 1906–1925.CrossRefGoogle Scholar
  12. Christensen, J. H., Kanikicharla, K. K., Marshall, G., & Turner, J. (2013). Climate phenomena and their relevance for future regional climate change. In T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, et al. (Eds.), Climate change 2013: The physical science basis contribution of working group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 1217–1308). Cambridge: Cambridge University Press.Google Scholar
  13. Comarazamy, D. E., & Gonzalez, J. E. (2011). Regional long-term climate change (1950–2000) in the midtropical Atlantic and its impacts on the hydrological cycle of Puerto Rico. Journal of Geophysical Research Atmospheres, 116.  https://doi.org/10.1029/2010jd015414.
  14. Conway, D., Hanson, C. E., Doherty, R., & Persechino, A. (2007). GCM simulations of the Indian Ocean dipole influence on East African rainfall: Present and future. Geophysical Research Letters, 34(3), L03705.CrossRefGoogle Scholar
  15. de Miranda, R. M., Andrade, M. D., Worobiec, A., & Van Grieken, R. (2002). Characterisation of aerosol particles in the Sao Paulo Metropolitan Area. Atmospheric Environment, 36, 345–352.CrossRefGoogle Scholar
  16. Defries, R. S., Bounoua, L., & James Collatz, G. (2002). Human modification of the landscape and surface climate in the next fifty years. Global Change Biology, 8(5), 438–458.CrossRefGoogle Scholar
  17. Deser, C., Phillips, A., Bourdette, V., & Teng, H. (2012). Uncertainty in climate change projections: the role of internal variability. Climate Dynamics, 38(3-4), 527–546.CrossRefGoogle Scholar
  18. Dlugokencky, E., et al. (2009). Observational constraints on recent increases in the atmospheric CH4 burden. Geophysical Research Letters, 36, L18803.CrossRefGoogle Scholar
  19. Donat, M. G., Alexander, L. V., Yang, H., Durre, I., Vose, R., Dunn, R. J. H., et al. (2013a). Updated analyses of temperature and precipitation extreme indices since the beginning of the twentieth century: the HadEX2 dataset. Journal of Geophysical Research: Atmospheres, 118(5), 2098–2118.Google Scholar
  20. Donat, M. G., Alexander, L. V., Yang, H., Durre, I., Vose, R., & Caesar, J. (2013b). Global land-based datasets for monitoring climatic extremes. Bulletin of the American Meteorological Society, 94(7), 997–1006.CrossRefGoogle Scholar
  21. Douglas, E. M., Wood, S., Sebastian, K., Vörösmarty, C. J., Chomitz, K. M., & Tomich, T. P. (2007). Policy implications of a pan-tropic assessment of the simultaneous hydrological and biodiversity impacts of deforestation. Water Resources Management, 21(1), 211–232.CrossRefGoogle Scholar
  22. Erel, Y. G., Dayan, U., Rabi, R., Rudich, Y., & Stein, M. (2006). Trans boundary transport of pollutants by atmospheric mineral dust. Environmental Science & Technology, 40, 2996–3005.CrossRefGoogle Scholar
  23. Exbrayat, J.-F., & Williams, M. (2015). Quantifying the net contribution of the historical Amazonian deforestation to climate change. Geophysical Research Letters, 42(8), 2968–2976.CrossRefGoogle Scholar
  24. FAO. (2010). Global forest resources assessment 2010 main report. FAO Forestry Paper 163.Google Scholar
  25. Fyfe, J. C. (2003). Separating extratropical zonal wind variability and mean change. Journal of Climate, 16(5), 863–874.CrossRefGoogle Scholar
  26. Ghose, M. K., Paul, R., & Banerjee, R. K. (2005). Assessment of the status of Urban air pollution and its impact on human health in the city of Kolkata. Environmental Monitoring and Assessment, 108, 151–167.CrossRefGoogle Scholar
  27. Gillett, N. P., Kell, T. D., & Jones, P. D. (2006). Regional climate impacts of the Southern Annular Mode. Geophysical Research Letters, 33(23), L23704.CrossRefGoogle Scholar
  28. Giorgi, F., Im, E.-S., Coppola, E., Diffenbaugh, N. S., Gao, X. J., Mariotti, L., et al. (2011). Higher hydroclimatic intensity with global warming. Journal of Climate, 24(20), 5309–5324.CrossRefGoogle Scholar
  29. Goswami, B. N., Venugopal, V., Sengupta, D., Madhusoodanan, M. S., & Xavier, P. K. (2006). Increasing trend of extreme rain events over India in a warming environment. Science, 314(5804), 1442–1445.CrossRefGoogle Scholar
  30. Hartmann, D. L., Klein Tank, A. M. G., Rusticucci, M., Alexander, L. V., Brönnimann, S., Charabi, Y., et al. (2013). Observations: Atmosphere and surface. In T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, et al. (Eds.), Climate change 2013: The physical science basis contribution of working group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.Google Scholar
  31. Jhajharia, D., Shrivastava, S., Sarkar, D., & Sarkar, S. (2009). Temporal characteristics of pan evaporation trends under humid conditions of northeast India. Agriculture Forest Meteorology, 336, 61–73.Google Scholar
  32. Jiang, Z., Song, J., Li, L., Chen, W., Wang, Z., & Wang, J. (2012). Extreme climate events in China: IPCC-AR4 model evaluation and projection. Climatic Change, 110(1-2), 385–401.CrossRefGoogle Scholar
  33. Jonsson, P. (2004). Vegetation as an urban climate control in the subtropical city of Gaborone, Botswana. International Journal of Climatology, 24, 1307–1322.CrossRefGoogle Scholar
  34. Juma, M. (2010). Security and regional cooperation in Africa: how can we make Africa’s security architecture fit for the new challenges. In Climate change resources migration: Securing Africa in an uncertain climate. Cape Town: Heinrich Böll Foundation Southern Africa.Google Scholar
  35. Jung, M., Reichstein, M., Ciais, P., Seneviratne, S. I., Sheffield, J., Goulden, M. L., et al. (2010). Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature, 467(7318), 951–954.CrossRefGoogle Scholar
  36. Karl, T. R., Arguez, A., Huang, B., Lawrimore, J. H., McMahon, J. R., Menne, M. J., et al. (2015). Possible artifacts of data biases in the recent global surface warming hiatus. Science, 348, 1469.Google Scholar
  37. Kaufmann, R. K., Kauppi, H., Mann, M. L., & Stock, J. H. (2011). Reconciling anthropogenic climate change with observed temperature 1998–2008. Proceedings of the National Academy of Sciences of the United States of America, 108, 11790–11793.CrossRefGoogle Scholar
  38. Koomey, J. (2015). Why we can’t ditch the 2 C warming goal. Ecowatch Blog. Retrieved July 10, 2015, from http://ecowatch.com/2014/10/27/2-c-warming-limit-climate-change/2/
  39. Kosaka, Y., & Xie, S.-P. (2013). Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature, 501(7467), 403.CrossRefGoogle Scholar
  40. Krishna Moorthy, K., Suresh Babu, S., Manoj, M. R., & Satheesh, S. K. (2013). Buildup of aerosols over the Indian region. Geophysical Research Letters, 40(5), 1011–1014.CrossRefGoogle Scholar
  41. Krishnan, R., & Sugi, M. (2003). Pacific decadal oscillation and variability of the Indian summer monsoon rainfall. Climate Dynamics, 21(3-4), 233–242.CrossRefGoogle Scholar
  42. Kueppers, L. M., Snyder, M. A., Sloan, L. C., Cayan, D., Jin, J., Kanamaru, H., et al. (2008). Seasonal temperature responses to land use change in the western United States. Global Planetary Change, 60, 250–264.CrossRefGoogle Scholar
  43. Kumar, K. K., Rajagopalan, B., Hoerling, M., Bates, G., & Cane, M. (2006). Unraveling the mystery of Indian monsoon failure during El Niño. Science, 314(5796), 115–119.CrossRefGoogle Scholar
  44. Lee, T.-c., Chan, K.-y., Chan, H.-s., & Kok, M.-h. (2011). Projections of extreme rainfall in Hong Kong in the 21st century. Acta Meteorologica Sinica, 25, 691–709.CrossRefGoogle Scholar
  45. Lejeune, Q., Davin, E. L., Guillod, B. P., & Seneviratne, S. I. (2015). Influence of Amazonian deforestation on the future evolution of regional surface fluxes, circulation, surface temperature and precipitation. Climate Dynamics, 44(9-10), 2769–2786.CrossRefGoogle Scholar
  46. Li, C. S., & Lin, C. H. (2002). PM1/PM2.5/PM10 characteristics in the urban atmosphere of Taipei. Aerosol Science and Technology, 36, 469–473.CrossRefGoogle Scholar
  47. Lindén, J. (2011). Nocturnal Cool Island in the Sahelian city of Ouagadougou, Burkina Faso. International Journal of Climatology, 31, 605–620.  https://doi.org/10.1002/joc.2069.CrossRefGoogle Scholar
  48. Lobell, D. B., Bonfils, C. J., Kueppers, L. M., & Snyder, M. A. (2008). Irrigation cooling effect on temperature and heat index extremes. Geophysical Research Letters, 35, L09705.  https://doi.org/10.1029/2008GL034145.CrossRefGoogle Scholar
  49. Lobell, D., Bala, G., Mirin, A., Phillips, T., Maxwell, R., & Rotman, D. (2009). Regional differences in the influence of irrigation on climate. Journal of Climate, 22(8), 2248–2255.CrossRefGoogle Scholar
  50. Mahmood, R., Pielke, R. A., Hubbard, K. G., Niyogi, D., Dirmeyer, P. A., McAlpine, C., et al. (2014). Land cover changes and their biogeophysical effects on climate. International Journal of Climatology, 34(4), 929–953.CrossRefGoogle Scholar
  51. Marengo, J. A., Liebmann, B., Grimm, A. M., Misra, V., Silva Dias, P. L., Cavalcanti, I. F. A., et al. (2012). Recent developments on the South American monsoon system. International Journal of Climatology, 32(1), 1–21.CrossRefGoogle Scholar
  52. Marengo, J. A. (2004). Interdecadal variability and trends of rainfall across the Amazon basin. Theoretical and Applied Climatology, 78(1–3), 79–96.Google Scholar
  53. May, W. (2011). The sensitivity of the Indian summer monsoon to a global warming of 2 C with respect to pre-industrial times. Climate Dynamics, 37(9-10), 1843–1868.CrossRefGoogle Scholar
  54. Mazzeo, N. A., & Venega, L. E. (2004). Some aspects of air pollution in Buenos Aires city. International Journal of Environment and Pollution, 22, 365–378.CrossRefGoogle Scholar
  55. Meehl, G. A., Covey, C., Delworth, T., Latif, M., McAvaney, B., Mitchell, J., et al. (2007). The WCRP CMIP3 multi-model dataset: A new era in climate change research. Bulletin of the American Meteorological Society, 88, 1383–1394.CrossRefGoogle Scholar
  56. Meehl, G. A., & Arblaster, J. M. (1998). The Asian-Australian monsoon and el niño-southern oscillation in the NCAR climate system model*. Journal of Climate, 11(6), 1356–1385.CrossRefGoogle Scholar
  57. Meehl, G. A., et al. (2011). Model-based evidence of deep-ocean heat uptake during surface-temperature hiatus periods. Nature Climate Change 1.7, 360.CrossRefGoogle Scholar
  58. Meehl, G. A., Hu, A., Arblaster, J., Fasullo, J., & Trenberth, K. E. (2013). Externally forced and internally generated decadal climate variability associated with the Interdecadal Pacific oscillation. Journal of Climate.  https://doi.org/10.1175/JCLI-D-12-00548.1.
  59. Mishra, V., Ganguly, A. R., Nijssen, B., & Lettenmaier, D. P. (2015). Changes in observed climate extremes in global urban areas. Environmental Research Letters, 10(2), 024005.CrossRefGoogle Scholar
  60. Moss, R. H., Edmonds, J. A., Hibbard, K. A., Manning, M. R., Rose, S. K., Van Vuuren, D. P., et al. (2010). The next generation of scenarios for climate change research and assessment. Nature, 463(7282), 747–756.CrossRefGoogle Scholar
  61. Neelin, J. D., Münnich, M., Hui, S., Meyerson, J. E., & Holloway, C. E. (2006). Tropical drying trends in global warming models and observations. Proceedings of the National Academy of Sciences, 103(16), 6110–6115.CrossRefGoogle Scholar
  62. Nicholson, S. E., & Kim, J. (1997). The relationship of the El Niño–Southern Oscillation to African rainfall. International Journal of Climatology, 17, 117–135.CrossRefGoogle Scholar
  63. O’Shea, P. M., Roy, S. S., & Singh, R. B. (2015). Diurnal variations in the spatial patterns of air pollution across Delhi. Theoretical and Applied Climatology, 124, 609.  https://doi.org/10.1007/s00704-015-1441-y.CrossRefGoogle Scholar
  64. Piao, S., Ciais, P., Huang, Y., Shen, Z., Peng, S., Li, J., Zhou, L., et al. (2010). The impacts of climate change on water resources and agriculture in China. Nature, 467(7311), 43–51.CrossRefGoogle Scholar
  65. Population Reference Bureau. (2015). World population data sheet 2014. Retrieved June 24, 2015, from http://www.prb.org/pdf14/2014-world-population-data-sheet_eng.pdf
  66. Quintana, J. M., & Aceituno, P. (2012). Changes in the rainfall regime along the extratropical west coast of South America (Chile): 30–43oS. Atmosfera, 25, 1–22.Google Scholar
  67. Quintana-Gomez, R. A. (1999). Trends of maximum and minimum temperatures in northern South America. Journal of Climate, 12(7), 2104–2112.CrossRefGoogle Scholar
  68. Ren, G. Y., Chu, Z. Y., Chen, Z. H., & Ren, Y. Y. (2007). Implications of temporal change in urban heat island intensity observed at Beijing and Wuhan stations. Geophysical Research Letters, 34, L05711.CrossRefGoogle Scholar
  69. Rigby, M., et al. (2008). Renewed growth of atmospheric methane. Geophysical Research Letters, 35, L22805.Google Scholar
  70. Roderick, M. L., Rotstayn, L. D., Farquhar, G. D., & Hobbins, M. T. (2007). On the attribution of changing pan evaporation. Geophysical Research Letters, 34, L17403.CrossRefGoogle Scholar
  71. Rohde, R., Muller, R. A., Jacobsen, R., Muller, E., Perlmutter, S., Rosenfeld, A., et al. (2013). A new estimate of the average Earth surface land temperature spanning 1753 to 2011. Geoinformation Geostatistics: An Overview, 1.  https://doi.org/10.4172/gigs.1000101.
  72. Schnadt Poberaj, C., Staehelin, J., Brunner, D., Thouret, V., De Backer, H., & Stübi, R. (2009). Long-term changes in UT/LS ozone between the late 1970s and the 1990s deduced from the GASP and MOZAIC aircraft programs and from ozonesondes. Atmospheric Chemistry and Physics, 9(14), 5343–5369.CrossRefGoogle Scholar
  73. Sen Roy, S., & Balling, R. C. (2005). Analysis of trends in maximum and minimum temperature, diurnal temperature range, and cloud cover over India. Geophysical Research Letters, 32, L12702.Google Scholar
  74. Sen Roy, S., Mahmood, R., Niyogi, D., Lei, M., Foster, S. A., Hubbard, K. G., et al. (2007). Impacts of the agricultural Green Revolution–induced land use changes on air temperatures in India. Journal of Geophysical Research: Atmospheres, 112, D21.Google Scholar
  75. Sen Roy, S., Singh, R. B., & Kumar, M. (2011). An analysis of local-spatial temperatures patterns in the Delhi metropolitan area. Physical Geography, 32, 114–138.CrossRefGoogle Scholar
  76. Sen Roy, S. (2006). The impacts of ENSO, PDO, and local SSTs on winter precipitation in India. Physical Geography, 27(5), 464–474.CrossRefGoogle Scholar
  77. Sen Roy, S. (2009). A spatial analysis of extreme hourly precipitation patterns in India. International Journal of Climatology, 29(3), 345–355.CrossRefGoogle Scholar
  78. Sen Roy, S., & Rouault, M. (2013). Spatial patterns of seasonal scale trends in extreme hourly precipitation in South Africa. Applied Geography, 39, 151–157.CrossRefGoogle Scholar
  79. Seneviratne, S. I., Nicholls, N., Easterling, D., Goodess, C. M., Kanae, S., Kossin, J., et al. (2012). Changes in climate extremes and their impacts on the natural physical environment. In C. B. Field et al. (Eds.), Managing the risks of extreme events and disasters to advance climate change adaptation: A special report of working groups I and II of the Intergovernmental Panel on Climate Change (IPCC) (pp. 109–230). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  80. Seth, A., Rojas, M., & Rauscher, S. A. (2010). CMIP3 projected changes in the annual cycle of the South American Monsoon. Climatic Change, 98(3-4), 331–357.CrossRefGoogle Scholar
  81. Sham, S. (1987). The urban heat island – its concept and application to Kuala Lumpur. In S. Sham (Ed.), Urbanisation and the atmospheric environment in the low tropics: Experiences from the Kelang Valley Region, Malaysia. Malaysia: Pernerbit University Kebangsaan.Google Scholar
  82. Solomon, S., Daniel, J. S., Neely, R. R., Vernier, J. P., Dutton, E. G., & Thomason, L. W. (2011). The persistently variable “background” stratospheric aerosol layer and global climate change. Science, 333, 866–870.Google Scholar
  83. Solomon, S., Rosenlof, K. H., Portmann, R. W., Daniel, J. S., Davis, S. M., Sanford, T. J., et al. (2010). Contributions of stratospheric water vapor to decadal changes in the rate of global warming. Science, 327, 1219–1223.Google Scholar
  84. Stern, N. (2007). The economics of climate change: The Stern review. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  85. Stocker, T. F., Qin, D., Plattner, G.-K., Alexander, L. V., Allen, S. K., Bindoff, N. L., et al. (2013). Technical summary. In T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, & P. M. Midgley (Eds.), Climate change 2013: The physical science basis contribution of working group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.Google Scholar
  86. Tanner, P. A., & Law, P. T. (2003). Organic acids in the atmosphere and bulk deposition of Hong Kong. Water Air and Soil Pollution, 142, 279–297.CrossRefGoogle Scholar
  87. Tans, P. (2009). An accounting of the observed increase in oceanic and atmospheric CO2 and an outlook for the future. Oceanography, 22, 26–35.CrossRefGoogle Scholar
  88. Thompson, L. G., et al. (2009). Glacier loss on Kilimanjaro continues unabated. Proceedings of the National Academy of Sciences 106.47: 19770–19775.Google Scholar
  89. Trenberth, K. E., Jones, P. D., Ambenje, P., Bojariu, R., Easterling, D., Klein Tank, A., et al. (2007). Observations: Surface and atmospheric climate change. In S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, & H. L. Miller (Eds.), Climate change 2007: The physical science basis. Contribution of working group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.Google Scholar
  90. Trenberth, K. E., & Fasullo, J. T. (2013). An apparent hiatus in global warming? Earth’s Future, 1(1), 19–32.CrossRefGoogle Scholar
  91. Turner, A. G., & Annamalai, H. (2012). Climate change and the South Asian summer monsoon. Nature Climate Change, 2(8), 587–595.CrossRefGoogle Scholar
  92. United Nations. (2016). SDGs: Sustainable development knowledge platform. United Nations. Retrieved December 29, 2016, from https://sustainabledevelopment.un.org/sdgs
  93. Villar, J. C. E., Guyot, J. L., Ronchail, J., Cochonneau, G., Filizola, N., Fraizy, P., et al. (2009). Contrasting regional discharge evolutions in the Amazon basin (1974–2004). Journal of Hydrology, 375(3), 297–311.CrossRefGoogle Scholar
  94. Vose, R. S., Easterling, D. R., & Gleason, B. (2005). Maximum and minimum temperature trends for the globe: An update through 2004. Geophysical Research Letters, 32, L23822.CrossRefGoogle Scholar
  95. WHO. (2015). 7 million premature deaths annually linked to air pollution. Retrieved June 26, 2015, from http://www.who.int/mediacentre/news/releases/2014/air-pollution/en/
  96. Wild, M., Grieser, J., & Schaer, C. (2008). Combined surface solar brightening and increasing greenhouse effect support recent intensification of the global land-based hydrological cycle. Geophysical Research Letters, 35, L17706.CrossRefGoogle Scholar
  97. Williams, C. A., & Hanan, N. P. (2011). ENSO and IOD teleconnections for African ecosystems: evidence of destructive interference between climate oscillations. Biogeosciences, 8(1), 27–40.CrossRefGoogle Scholar
  98. World Bank. (2015). Little data book on climate change: Supplemental data. Retrieved June 29, 2015, from http://data.worldbank.org/data-catalog/ldbcc-supplemental
  99. Yan, Z., Li, Z., Li, Q., & Jones, P. (2010). Effects of site change and urbanisation in the Beijing temperature series 1977–2006. International Journal of Climatology, 30, 1226–1234.CrossRefGoogle Scholar
  100. Zhang, Y., Liu, C., Tang, Y., & Yang, Y. (2007). Trends in pan evaporation and reference and actual evapotranspiration across the Tibetan Plateau. Journal of Geophysical Research: Atmospheres, 112(D12).Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Shouraseni Sen Roy
    • 1
  1. 1.Department of Geography and Regional StudiesUniversity of MiamiCoral GablesUSA

Personalised recommendations