Melanin-Concentrating Hormone: Role in Nursing and Sleep in Mother Rats

  • Luciana BenedettoEmail author
  • Pablo Torterolo
  • Annabel Ferreira


In mammals, the postpartum female undergoes the most important physiological and behavioral changes in life, which allow orchestrating two essential behaviors for survival: nursing and sleep. Although the melanin-concentrating hormone (MCH) is mainly found within the posterolateral hypothalamus and incerto-hypothalamic area, during lactation this neuropeptide is also expressed in the preoptic area (POA). Remarkably, this brain area controls key components not only of the maternal behavior repertoire but also is involved in the regulation of sleep and wakefulness. In this sense, when MCH is microinjected into the POA, this neuropeptide is capable to reduce the motivational aspects of maternal behavior in postpartum rats while increases sleep in male rats. This effect seems to oppose to one of the dopaminergic systems that promotes wakefulness while in postpartum rats stimulates motivational components of maternal behavior. How the MCHergic system controls maternal behavior and sleep within the POA is still an unresolved question.

In this chapter, we provide neuroanatomical and neurochemical evidences showing that MCHergic and dopaminergic systems interact within the medial POA (mPOA) to regulate maternal behavior and sleep. We suggest that the interplay among these and other neurotransmitter/neuromodulators modulates mother’s physiology and behavior assuring not only pups’ nutrition and development but also the mother’s needs for rest and sleep during this highly demanding period of life. Finally, we discuss some useful directions for future research and some issues yet to be explored.


MCH Maternal behavior Postpartum period Dopamine Preoptic Hypothalamus 


  1. Adams AC, Domouzoglou EM, Chee MJ, Segal-Lieberman G, Pissios P, Maratos-Flier E (2011) Ablation of the hypothalamic neuropeptide melanin concentrating hormone is associated with behavioral abnormalities that reflect impaired olfactory integration. Behav Brain Res 224(1):195–200PubMedPubMedCentralCrossRefGoogle Scholar
  2. Ahnaou A, Drinkenburg WH, Bouwknecht JA, Alcazar J, Steckler T, Dautzenberg FM (2008) Blocking melanin-concentrating hormone MCH1 receptor affects rat sleep-wake architecture. Eur J Pharmacol 579(1–3):177–188PubMedGoogle Scholar
  3. Alachkar A, Alhassen L, Wang Z, Wang L, Onouye K, Sanathara N, Civelli O (2016) Inactivation of the melanin concentrating hormone system impairs maternal behavior. Eur Neuropsychopharmacol 26(11):1826–1835PubMedCrossRefPubMedCentralGoogle Scholar
  4. Alberto CO, Trask RB, Hirasawa M (2011) Dopamine acts as a partial agonist for alpha2A adrenoceptor in melanin-concentrating hormone neurons. J Neurosci 31(29):10671–10676PubMedCrossRefGoogle Scholar
  5. Alvisi RD, Diniz GB, Da-Silva JM, Bittencourt JC, Felicio LF (2016) Suckling-induced Fos activation and melanin-concentrating hormone immunoreactivity during late lactation. Life Sci 148:241–246PubMedCrossRefGoogle Scholar
  6. Asala SA, Okano Y, Honda K, Inoue S (1990) Effects of medial preoptic area lesions on sleep and wakefulness in unrestrained rats. Neurosci Lett 114(3):300–304PubMedCrossRefGoogle Scholar
  7. Benedetto L, Chase MH, Torterolo P (2012) GABAergic processes within the median preoptic nucleus promote NREM sleep. Behav Brain Res 232(1):60–65PubMedCrossRefGoogle Scholar
  8. Benedetto L, Rodriguez-Servetti Z, Lagos P, D'Almeida V, Monti JM, Torterolo P (2013) Microinjection of melanin concentrating hormone into the lateral preoptic area promotes non-REM sleep in the rat. Peptides 39:11–15PubMedCrossRefGoogle Scholar
  9. Benedetto L, Pereira M, Ferreira A, Torterolo P (2014) Melanin-concentrating hormone in the medial preoptic area reduces active components of maternal behavior in rats. Peptides 58C:20–25CrossRefGoogle Scholar
  10. Benedetto L, Rivas M, Cavelli M, Pena F, Monti J, Ferreira A, Torterolo P (2017a) Microinjection of the dopamine D2-receptor antagonist Raclopride into the medial preoptic area reduces REM sleep in lactating rats. Neurosci Lett 659:104–109PubMedCrossRefGoogle Scholar
  11. Benedetto L, Rivas M, Pereira M, Ferreira A, Torterolo P (2017b) A descriptive analysis of sleep and wakefulness states in different maternal behaviors in lactating rats. Arch Ital Biol 155(3):99–109PubMedGoogle Scholar
  12. Berridge KC (2004) Motivation concepts in behavioral neuroscience. Physiol Behav 81(2):179–209PubMedCrossRefGoogle Scholar
  13. Bittencourt JC, Presse F, Arias C, Peto C, Vaughan J, Nahon JL, Vale W, Sawchenko PE (1992) The melanin-concentrating hormone system of the rat brain: an immuno- and hybridization histochemical characterization. J Comp Neurol 319(2):218–245PubMedCrossRefGoogle Scholar
  14. Blanco-Centurion C, Liu M, Konadhode RP, Zhang X, Pelluru D, van den Pol AN, Shiromani PJ (2016) Optogenetic activation of melanin-concentrating hormone neurons increases non-rapid eye movement and rapid eye movement sleep during the night in rats. Eur J Neurosci 44(10):2846–2857PubMedPubMedCentralCrossRefGoogle Scholar
  15. Blouin AM, Fried I, Wilson CL, Staba RJ, Behnke EJ, Lam HA, Maidment NT, Karlsson KAE, Lapierre JL, Siegel JM (2013) Human hypocretin and melanin-concentrating hormone levels are linked to emotion and social interaction. Nat Commun 4:1547PubMedPubMedCentralCrossRefGoogle Scholar
  16. Bosch OJ, Pfortsch J, Beiderbeck DI, Landgraf R, Neumann ID (2010) Maternal behaviour is associated with vasopressin release in the medial preoptic area and bed nucleus of the stria terminalis in the rat. J Neuroendocrinol 22(5):420–429PubMedCrossRefGoogle Scholar
  17. Bridges RS, Numan M, Ronsheim PM, Mann PE, Lupini CE (1990) Central prolactin infusions stimulate maternal behavior in steroid-treated, nulliparous female rats. Proc Natl Acad Sci U S A 87(20):8003–8007PubMedPubMedCentralCrossRefGoogle Scholar
  18. Champagne FA, Curley JP (2016) Plasticity of the maternal brain across the lifespan. New Dir Child Adolesc Dev 2016(153):9–21PubMedCrossRefGoogle Scholar
  19. Champagne FA, Chretien P, Stevenson CW, Zhang TY, Gratton A, Meaney MJ (2004) Variations in nucleus accumbens dopamine associated with individual differences in maternal behavior in the rat. J Neurosci 24(17):4113–4123PubMedCrossRefGoogle Scholar
  20. Chung S, Hopf FW, Nagasaki H, Li CY, Belluzzi JD, Bonci A, Civelli O (2009) The melanin-concentrating hormone system modulates cocaine reward. Proc Natl Acad Sci U S A 106(16):6772–6777PubMedPubMedCentralCrossRefGoogle Scholar
  21. Conductier G, Nahon JL, Guyon A (2011) Dopamine depresses melanin concentrating hormone neuronal activity through multiple effects on alpha2-noradrenergic, D1 and D2-like dopaminergic receptors. Neuroscience 178:89–100PubMedCrossRefGoogle Scholar
  22. Dahan L, Astier B, Vautrelle N, Urbain N, Kocsis B, Chouvet G (2007) Prominent burst firing of dopaminergic neurons in the ventral tegmental area during paradoxical sleep. Neuropsychopharmacology 32(6):1232–1241PubMedCrossRefGoogle Scholar
  23. Dias Abdo Agamme AL, Aguilar Calegare BF, Fernandes L, Costa A, Lagos P, Torterolo P, D'Almeida V (2015) MCH levels in the CSF, brain preproMCH and MCHR1 gene expression during paradoxical sleep deprivation, sleep rebound and chronic sleep restriction. Peptides 74:9–15PubMedCrossRefGoogle Scholar
  24. Diniz GB, Bittencourt JC (2017) The melanin-concentrating hormone as an integrative peptide driving motivated behaviors. Front Syst Neurosci 11:32PubMedPubMedCentralCrossRefGoogle Scholar
  25. Driessen TM, Zhao C, Whittlinger A, Williams H, Gammie SC (2014) Endogenous CNS expression of neurotensin and neurotensin receptors is altered during the postpartum period in outbred mice. PLoS One 9(1):e83098PubMedPubMedCentralCrossRefGoogle Scholar
  26. Fallon JH, Moore RY (1978) Catecholamine innervation of the basal forebrain. IV. Topography of the dopamine projection to the basal forebrain and neostriatum. J Comp Neurol 180(3):545–580PubMedCrossRefGoogle Scholar
  27. Ferreira JGP, Duarte JCG, Diniz GB, Bittencourt JC (2017) Litter size determines the number of melanin-concentrating hormone neurons in the medial preoptic area of Sprague Dawley lactating dams. Physiol Behav 181:75–79PubMedCrossRefGoogle Scholar
  28. Fisher AE (1956) Maternal and sexual behavior induced by intracranial chemical stimulation. Science 124(3214):228–229PubMedCrossRefPubMedCentralGoogle Scholar
  29. Garcia MC, Lopez M, Gualillo O, Seoane LM, Dieguez C, Senaris RM (2003) Hypothalamic levels of NPY, MCH, and prepro-orexin mRNA during pregnancy and lactation in the rat: role of prolactin. FASEB J 17(11):1392–1400PubMedCrossRefGoogle Scholar
  30. Georgescu D, Sears RM, Hommel JD, Barrot M, Bolanos CA, Marsh DJ, Bednarek MA, Bibb JA, Maratos-Flier E, Nestler EJ, DiLeone RJ (2005) The hypothalamic neuropeptide melanin-concentrating hormone acts in the nucleus accumbens to modulate feeding behavior and forced-swim performance. J Neurosci 25(11):2933–2940PubMedCrossRefGoogle Scholar
  31. Gong H, McGinty D, Guzman-Marin R, Chew KT, Stewart D, Szymusiak R (2004) Activation of c-fos in GABAergic neurones in the preoptic area during sleep and in response to sleep deprivation. J Physiol 556(Pt 3):935–946PubMedPubMedCentralCrossRefGoogle Scholar
  32. Gonzalez JA, Iordanidou P, Strom M, Adamantidis A, Burdakov D (2016) Awake dynamics and brain-wide direct inputs of hypothalamic MCH and orexin networks. Nat Commun 7:11395PubMedPubMedCentralCrossRefGoogle Scholar
  33. Gonzalez-Mariscal G, Caba M, Martinez-Gomez M, Bautista A, Hudson R (2016) Mothers and offspring: the rabbit as a model system in the study of mammalian maternal behavior and sibling interactions. Horm Behav 77:30–41PubMedCrossRefGoogle Scholar
  34. Grota LJ, Ader R (1969) Continuous recording of maternal behavior in Rattus Norvegicus. Anim Behav 17:722–729CrossRefGoogle Scholar
  35. Gvilia I, Xu F, McGinty D, Szymusiak R (2006) Homeostatic regulation of sleep: a role for preoptic area neurons. J Neurosci 26(37):9426–9433PubMedCrossRefGoogle Scholar
  36. Hall WG, Rosenblatt JS (1978) Development of nutritional control of food intake in suckling rat pups. Behav Biol 24(4):413–427PubMedCrossRefGoogle Scholar
  37. Hansen S, Harthon C, Wallin E, Lofberg L, Svensson K (1991a) The effects of 6-OHDA-induced dopamine depletions in the ventral or dorsal striatum on maternal and sexual behavior in the female rat. Pharmacol Biochem Behav 39(1):71–77PubMedCrossRefGoogle Scholar
  38. Hansen S, Harthon C, Wallin E, Lofberg L, Svensson K (1991b) Mesotelencephalic dopamine system and reproductive behavior in the female rat: effects of ventral tegmental 6-hydroxydopamine lesions on maternal and sexual responsiveness. Behav Neurosci 105(4):588–598PubMedCrossRefGoogle Scholar
  39. Hansen S, Bergvall AH, Nyiredi S (1993) Interaction with pups enhances dopamine release in the ventral striatum of maternal rats: a microdialysis study. Pharmacol Biochem Behav 45(3):673–676PubMedCrossRefGoogle Scholar
  40. Hassani OK, Lee MG, Jones BE (2009) Melanin-concentrating hormone neurons discharge in a reciprocal manner to orexin neurons across the sleep-wake cycle. Proc Natl Acad Sci U S A 106(7):2418–2422PubMedPubMedCentralCrossRefGoogle Scholar
  41. Hervieu GJ, Cluderay JE, Harrison D, Meakin J, Maycox P, Nasir S, Leslie RA (2000) The distribution of the mRNA and protein products of the melanin- concentrating hormone (MCH) receptor gene, slc-1, in the central nervous system of the rat. Eur J Neurosci 12(4):1194–1216PubMedCrossRefGoogle Scholar
  42. Hopf FW, Seif T, Chung S, Civelli O (2013) MCH and apomorphine in combination enhance action potential firing of nucleus accumbens shell neurons in vitro. PeerJ 1:e61PubMedPubMedCentralCrossRefGoogle Scholar
  43. Hunter LP, Rychnovsky JD, Yount SM (2009) A selective review of maternal sleep characteristics in the postpartum period. J Obstet Gynecol Neonatal Nurs 38(1):60–68PubMedCrossRefGoogle Scholar
  44. Insel TR (1990) Regional changes in brain oxytocin receptors post-partum: time-course and relationship to maternal behaviour. J Neuroendocrinol 2(4):539–545PubMedCrossRefGoogle Scholar
  45. Jacobson CD, Terkel J, Gorski RA, Sawyer CH (1980) Effects of small medial preoptic area lesions on maternal behavior: retrieving and nest building in the rat. Brain Res 194(2):471–478PubMedCrossRefGoogle Scholar
  46. Jego S, Glasgow SD, Herrera CG, Ekstrand M, Reed SJ, Boyce R, Friedman J, Burdakov D, Adamantidis AR (2013) Optogenetic identification of a rapid eye movement sleep modulatory circuit in the hypothalamus. Nat Neurosci 16(11):1637–1643PubMedPubMedCentralCrossRefGoogle Scholar
  47. Kaushik MK, Kumar VM, Mallick HN (2011) Glutamate microinjection at the medial preoptic area enhances slow wave sleep in rats. Behav Brain Res 217(1):240–243PubMedCrossRefGoogle Scholar
  48. Keer SE, Stern JM (1999) Dopamine receptor blockade in the nucleus accumbens inhibits maternal retrieval and licking, but enhances nursing behavior in lactating rats. Physiol Behav 67(5):659–669PubMedCrossRefGoogle Scholar
  49. Knollema S, Brown ER, Vale W, Sawchenko PE (1992) Novel hypothalamic and preoptic sites of prepro-melanin-concentrating hormone messenger ribonucleic acid and peptide expression in lactating rats. J Neuroendocrinol 4(6):709–717PubMedCrossRefGoogle Scholar
  50. Konadhode RR, Pelluru D, Blanco-Centurion C, Zayachkivsky A, Liu M, Uhde T, Glen WB Jr, van den Pol AN, Mulholland PJ, Shiromani PJ (2013) Optogenetic stimulation of MCH neurons increases sleep. J Neurosci 33(25):10257–10263PubMedPubMedCentralCrossRefGoogle Scholar
  51. Konadhode RR, Pelluru D, Shiromani PJ (2015) Neurons containing orexin or melanin concentrating hormone reciprocally regulate wake and sleep. Front Syst Neurosci 8:244PubMedPubMedCentralCrossRefGoogle Scholar
  52. Krasnow SM, Steiner RA (2006) Physiological mechanisms integrating metabolism and reproduction. In: Neill JD (ed) Knobil and Neill’s physiology of reproduction. Elsevier, St. Louis, MO, pp 2553–2625CrossRefGoogle Scholar
  53. Kumar VM (2004) Why the medial preoptic area is important for sleep regulation. Indian J Physiol Pharmacol 48(2):137–149PubMedGoogle Scholar
  54. Lagos P, Torterolo P, Jantos H, Chase MH, Monti JM (2009) Effects on sleep of melanin-concentrating hormone (MCH) microinjections into the dorsal raphe nucleus. Brain Res 1265:103–110PubMedCrossRefGoogle Scholar
  55. Lagos P, Monti JM, Jantos H, Torterolo P (2012) Microinjection of the melanin-concentrating hormone into the lateral basal forebrain increases REM sleep and reduces wakefulness in the rat. Life Sci 90(23–24):895–899PubMedCrossRefGoogle Scholar
  56. Lalonde R, Qian S (2007) Exploratory activity, motor coordination, and spatial learning in Mchr1 knockout mice. Behav Brain Res 178(2):293–304PubMedCrossRefGoogle Scholar
  57. Lee KA (1998) Alterations in sleep during pregnancy and postpartum: a review of 30 years of research. Sleep Med Rev 2(4):231–242PubMedCrossRefGoogle Scholar
  58. Lee A, Clancy S, Fleming AS (2000) Mother rats bar-press for pups: effects of lesions of the mpoa and limbic sites on maternal behavior and operant responding for pup-reinforcement. Behav Brain Res 108(2):215–231PubMedCrossRefGoogle Scholar
  59. Lena I, Parrot S, Deschaux O, Muffat-Joly S, Sauvinet V, Renaud B, Suaud-Chagny MF, Gottesmann C (2005) Variations in extracellular levels of dopamine, noradrenaline, glutamate, and aspartate across the sleep–wake cycle in the medial prefrontal cortex and nucleus accumbens of freely moving rats. J Neurosci Res 81(6):891–899PubMedCrossRefGoogle Scholar
  60. Lincoln DW, Hentzen K, Hin T, van der Schoot P, Clarke G, Summerlee AJ (1980) Sleep: a prerequisite for reflex milk ejection in the rat. Exp Brain Res 38(2):151–162PubMedCrossRefGoogle Scholar
  61. Lindvall O, Bjorklund A (1974) The organization of the ascending catecholamine neuron systems in the rat brain as revealed by the glyoxylic acid fluorescence method. Acta Physiol Scand Suppl 412:1–48PubMedGoogle Scholar
  62. Lindvall O, Bjorklund A, Moore RY, Stenevi U (1974) Mesencephalic dopamine neurons projecting to neocortex. Brain Res 81(2):325–331PubMedCrossRefGoogle Scholar
  63. Lu J, Greco MA, Shiromani P, Saper CB (2000) Effect of lesions of the ventrolateral preoptic nucleus on NREM and REM sleep. J Neurosci 20(10):3830–3842PubMedCrossRefGoogle Scholar
  64. Lu J, Bjorkum AA, Xu M, Gaus SE, Shiromani PJ, Saper CB (2002) Selective activation of the extended ventrolateral preoptic nucleus during rapid eye movement sleep. J Neurosci 22(11):4568–4576PubMedCrossRefGoogle Scholar
  65. Lyamin O, Pryaslova J, Kosenko P, Siegel J (2007) Behavioral aspects of sleep in bottlenose dolphin mothers and their calves. Physiol Behav 92(4):725–733PubMedCrossRefGoogle Scholar
  66. Macneil DJ (2013) The role of melanin-concentrating hormone and its receptors in energy homeostasis. Front Endocrinol (Lausanne) 4:49Google Scholar
  67. Maloney KJ, Mainville L, Jones BE (2002) C-Fos expression in dopaminergic and GABAergic neurons of the ventral mesencephalic tegmentum after paradoxical sleep deprivation and recovery. Eur J Neurosci 15(4):774–778PubMedCrossRefGoogle Scholar
  68. Marsh DJ, Weingarth DT, Novi DE, Chen HY, Trumbauer ME, Chen AS, Guan XM, Jiang MM, Feng Y, Camacho RE, Shen Z, Frazier EG, Yu H, Metzger JM, Kuca SJ, Shearman LP, Gopal-Truter S, MacNeil DJ, Strack AM, MacIntyre DE, Van der Ploeg LH, Qian S (2002) Melanin-concentrating hormone 1 receptor-deficient mice are lean, hyperactive, and hyperphagic and have altered metabolism. Proc Natl Acad Sci U S A 99(5):3240–3245PubMedPubMedCentralCrossRefGoogle Scholar
  69. Mendelson WB (1996) Sleep induction by microinjection of pentobarbital into the medial preoptic area in rats. Life Sci 59(22):1821–1828PubMedCrossRefGoogle Scholar
  70. Mendelson WB (2000) Sleep-inducing effects of adenosine microinjections into the medial preoptic area are blocked by flumazenil. Brain Res 852(2):479–481PubMedCrossRefGoogle Scholar
  71. Mendelson WB (2001) The sleep-inducing effect of ethanol microinjection into the medial preoptic area is blocked by flumazenil. Brain Res 892(1):118–121PubMedCrossRefGoogle Scholar
  72. Mendelson WB, Martin JV (1992) Characterization of the hypnotic effects of triazolam microinjections into the medial preoptic area. Life Sci 50(15):1117–1128PubMedCrossRefGoogle Scholar
  73. Miller SM, Lonstein JS (2005) Dopamine d1 and d2 receptor antagonism in the preoptic area produces different effects on maternal behavior in lactating rats. Behav Neurosci 119(4):1072–1083PubMedCrossRefGoogle Scholar
  74. Miller JD, Farber J, Gatz P, Roffwarg H, German DC (1983) Activity of mesencephalic dopamine and non-dopamine neurons across stages of sleep and walking in the rat. Brain Res 273(1):133–141PubMedCrossRefGoogle Scholar
  75. Mogenson GJ, Jones DL, Yim CY (1980) From motivation to action: functional interface between the limbic system and the motor system. Prog Neurobiol 14(2–3):69–97PubMedCrossRefGoogle Scholar
  76. Montgomery-Downs HE, Insana SP, Clegg-Kraynok MM, Mancini LM (2010) Normative longitudinal maternal sleep: the first 4 postpartum months. Am J Obstet Gynecol 203(5):465 e461–465 e467CrossRefGoogle Scholar
  77. Monti JM, Torterolo P, Lagos P (2013) Melanin-concentrating hormone control of sleep-wake behavior. Sleep Med Rev 17(4):293–298PubMedCrossRefGoogle Scholar
  78. Monti JM, Lagos P, Jantos H, Torterolo P (2015) Increased REM sleep after intra-locus coeruleus nucleus microinjection of melanin-concentrating hormone (MCH) in the rat. Prog Neuro-Psychopharmacol Biol Psychiatry 56:185–188CrossRefGoogle Scholar
  79. Monti JM, Pandi-Perumal SR, Chokroverty S (2016) Dopamine and sleep: molecular, functional, and clinical aspects. Springer, SwitzerlandCrossRefGoogle Scholar
  80. Moore RY, Bloom FE (1978) Central catecholamine neuron systems: anatomy and physiology of the dopamine systems. Annu Rev Neurosci 1:129–169PubMedCrossRefGoogle Scholar
  81. Mul JD, la Fleur SE, Toonen PW, Afrasiab-Middelman A, Binnekade R, Schetters D, Verheij MM, Sears RM, Homberg JR, Schoffelmeer AN, Adan RA, DiLeone RJ, De Vries TJ, Cuppen E (2011) Chronic loss of melanin-concentrating hormone affects motivational aspects of feeding in the rat. PLoS One 6(5):e19600PubMedPubMedCentralCrossRefGoogle Scholar
  82. Neve HA, Paisley AC, Summerlee AJ (1982) Arousal a prerequisite for suckling in the conscious rabbit? Physiol Behav 28(2):213–217PubMedCrossRefGoogle Scholar
  83. Neville MC (2006) Lactation and its hormonal control. In: Knobil E, Neill JD (eds) The physiology of reproduction. Elsevier, New York, pp 2993–3054Google Scholar
  84. Nishihara K, Horiuchi S, Eto H, Uchida S, Honda M (2004) Delta and theta power spectra of night sleep EEG are higher in breast-feeding mothers than in non-pregnant women. Neurosci Lett 368(2):216–220PubMedCrossRefGoogle Scholar
  85. Numan M (1974) Medial preoptic area and maternal behavior in the female rat. J Comp Physiol Psychol 87(4):746–759PubMedCrossRefPubMedCentralGoogle Scholar
  86. Numan M (1994) Maternal behavior. In: Knobil E, Neill JD (eds) The physiology of reproduction. Raven, New York, pp 221–302Google Scholar
  87. Numan M, Callahan EC (1980) The connections of the medial preoptic region and maternal behavior in the rat. Physiol Behav 25(5):653–665PubMedCrossRefGoogle Scholar
  88. Numan M, Insel TR (2003) The neurobiology of parental behavior. Springer, New YorkGoogle Scholar
  89. Numan M, Rosenblatt JS, Komisaruk BR (1977) Medial preoptic area and onset of maternal behavior in the rat. J Comp Physiol Psychol 91(1):146–164PubMedCrossRefPubMedCentralGoogle Scholar
  90. Numan M, Corodimas KP, Numan MJ, Factor EM, Piers WD (1988) Axon-sparing lesions of the preoptic region and substantia innominata disrupt maternal behavior in rats. Behav Neurosci 102(3):381–396PubMedCrossRefPubMedCentralGoogle Scholar
  91. Numan M, Numan MJ, Pliakou N, Stolzenberg DS, Mullins OJ, Murphy JM, Smith CD (2005a) The effects of D1 or D2 dopamine receptor antagonism in the medial preoptic area, ventral pallidum, or nucleus accumbens on the maternal retrieval response and other aspects of maternal behavior in rats. Behav Neurosci 119(6):1588–1604PubMedCrossRefGoogle Scholar
  92. Numan M, Numan MJ, Schwarz JM, Neuner CM, Flood TF, Smith CD (2005b) Medial preoptic area interactions with the nucleus accumbens-ventral pallidum circuit and maternal behavior in rats. Behav Brain Res 158(1):53–68PubMedCrossRefGoogle Scholar
  93. Orzel-Gryglewska J, Matulewicz P, Jurkowlaniec E (2015) Brainstem system of hippocampal theta induction: the role of the ventral tegmental area. Synapse 69(11):553–575PubMedCrossRefGoogle Scholar
  94. Parent C, Wen X, Dhir SK, Ryan R, Diorio J, Zhang TY (2017) Maternal care associates with differences in morphological complexity in the medial preoptic area. Behav Brain Res 326:22–32PubMedCrossRefGoogle Scholar
  95. Parkes DG, Vale WW (1993) Contrasting actions of melanin-concentrating hormone and neuropeptide-E-I on posterior pituitary function. Ann N Y Acad Sci 680:588–590PubMedCrossRefGoogle Scholar
  96. Pedersen CA, Caldwell JD, Walker C, Ayers G, Mason GA (1994) Oxytocin activates the postpartum onset of rat maternal behavior in the ventral tegmental and medial preoptic areas. Behav Neurosci 108(6):1163–1171PubMedCrossRefPubMedCentralGoogle Scholar
  97. Pelluru D, Konadhode R, Shiromani PJ (2013) MCH neurons are the primary sleep-promoting group. Sleep 36(12):1779–1781PubMedPubMedCentralCrossRefGoogle Scholar
  98. Pereira M (2016) Structural and functional plasticity in the maternal brain circuitry. New Dir Child Adolesc Dev 2016(153):23–46PubMedCrossRefGoogle Scholar
  99. Pereira M, Ferreira A (2015) Neuroanatomical and neurochemical basis of parenting: dynamic coordination of motivational, affective and cognitive processes. Horm Behav 77:72–85PubMedCrossRefGoogle Scholar
  100. Pereira M, Morrell JI (2009) The changing role of the medial preoptic area in the regulation of maternal behavior across the postpartum period: facilitation followed by inhibition. Behav Brain Res 205(1):238–248PubMedPubMedCentralCrossRefGoogle Scholar
  101. Reisbick S, Rosenblatt JS, Mayer AD (1975) Decline of maternal behavior in the virgin and lactating rat. J Comp Physiol Psychol 89(7):722–732PubMedCrossRefGoogle Scholar
  102. Rheingold H (1963) Maternal behavior in mammals. Wiley, New YorkGoogle Scholar
  103. Risold PY, Canteras NS, Swanson LW (1994) Organization of projections from the anterior hypothalamic nucleus: a Phaseolus vulgaris-leucoagglutinin study in the rat. J Comp Neurol 348(1):1–40PubMedCrossRefGoogle Scholar
  104. Rivas M, Torterolo P, Ferreira A, Benedetto L (2016) Hypocretinergic system in the medial preoptic area promotes maternal behavior in lactating rats. Peptides 81:9–14PubMedCrossRefGoogle Scholar
  105. Rondini TA, Donato J Jr, Rodrigues Bde C, Bittencourt JC, Elias CF (2010) Chemical identity and connections of medial preoptic area neurons expressing melanin-concentrating hormone during lactation. J Chem Neuroanat 39(1):51–62PubMedCrossRefGoogle Scholar
  106. Rosenblatt JS (1975) Prepartum and postpartum regulation of maternal behaviour in the rat. Ciba Found Symp 33:17–37Google Scholar
  107. Rosenblatt JS (1980) Hormonal and nonhormonal regulation of maternal behavior: a theoretical survey. Reprod Nutr Dev 20(3B):791–800PubMedCrossRefGoogle Scholar
  108. Rosenblatt JS, Ceus K (1998) Estrogen implants in the medial preoptic area stimulate maternal behavior in male rats. Horm Behav 33(1):23–30PubMedCrossRefGoogle Scholar
  109. Rosenblatt J, Mayer A, Siegel H (1985) Maternal behavior among nonprimate mammals. In: Adler N, Pfaff D, Goy RW (eds) Handbook of behavioral neurobiology. Plenum, New York, pp 229–298Google Scholar
  110. Rosenblatt JS, Mayer AD, Giordano AL (1988) Hormonal basis during pregnancy for the onset of maternal behavior in the rat. Psychoneuroendocrinology 13(1–2):29–46PubMedCrossRefGoogle Scholar
  111. Saito Y, Nagasaki H (2008) The melanin-concentrating hormone system and its physiological functions. Results Probl Cell Differ 46:159–179PubMedCrossRefGoogle Scholar
  112. Saito Y, Cheng M, Leslie FM, Civelli O (2001) Expression of the melanin-concentrating hormone (MCH) receptor mRNA in the rat brain. J Comp Neurol 435(1):26–40PubMedCrossRefGoogle Scholar
  113. Salamone JD, Correa M (2012) The mysterious motivational functions of mesolimbic dopamine. Neuron 76(3):470–485PubMedPubMedCentralCrossRefGoogle Scholar
  114. Schrader JA, Smale L, Nunez AA (2012) Pregnancy affects FOS rhythms in brain regions regulating sleep/wake state and body temperature in rats. Brain Res 1480:53–60PubMedPubMedCentralCrossRefGoogle Scholar
  115. Schultz W, Apicella P, Ljungberg T (1993) Responses of monkey dopamine neurons to reward and conditioned stimuli during successive steps of learning a delayed response task. J Neurosci 13(3):900–913PubMedCrossRefGoogle Scholar
  116. Sharma V, Mazmanian D (2003) Sleep loss and postpartum psychosis. Bipolar Disord 5(2):98–105PubMedCrossRefGoogle Scholar
  117. Simerly RB, Swanson LW (1986) The organization of neural inputs to the medial preoptic nucleus of the rat. J Comp Neurol 246(3):312–342PubMedCrossRefGoogle Scholar
  118. Sivadas N, Radhakrishnan A, Aswathy BS, Kumar VM, Gulia KK (2016) Dynamic changes in sleep pattern during post-partum in normal pregnancy in rat model. Behav Brain Res 320:264–274PubMedCrossRefGoogle Scholar
  119. Smith DG, Tzavara ET, Shaw J, Luecke S, Wade M, Davis R, Salhoff C, Nomikos GG, Gehlert DR (2005) Mesolimbic dopamine super-sensitivity in melanin-concentrating hormone-1 receptor-deficient mice. J Neurosci 25(4):914–922PubMedCrossRefGoogle Scholar
  120. Stern JM (1989) Maternal behavior: sensory, hormonal and neural determinants. In: Brush FR, Levine S (eds) Psychoendocrinology. Academic, New York, pp 103–226Google Scholar
  121. Stern JM (1991) Nursing posture is elicited rapidly in maternally naive, haloperidol-treated female and male rats in response to ventral trunk stimulation from active pups. Horm Behav 25(4):504–517PubMedCrossRefGoogle Scholar
  122. Stern JM, Johnson SK (1990) Ventral somatosensory determinants of nursing behavior in Norway rats. I. Effects of variations in the quality and quantity of pup stimuli. Physiol Behav 47(5):993–1011PubMedCrossRefGoogle Scholar
  123. Stern JM, Keer SE (1999) Maternal motivation of lactating rats is disrupted by low dosages of haloperidol. Behav Brain Res 99(2):231–239PubMedCrossRefGoogle Scholar
  124. Stolzenberg DS, Numan M (2011) Hypothalamic interaction with the mesolimbic DA system in the control of the maternal and sexual behaviors in rats. Neurosci Biobehav Rev 35(3):826–847PubMedCrossRefGoogle Scholar
  125. Stolzenberg DS, McKenna JB, Keough S, Hancock R, Numan MJ, Numan M (2007) Dopamine D1 receptor stimulation of the nucleus accumbens or the medial preoptic area promotes the onset of maternal behavior in pregnancy-terminated rats. Behav Neurosci 121(5):907–919PubMedCrossRefGoogle Scholar
  126. Suntsova NV, Dergacheva OY (2004) The role of the medial preoptic area of the hypothalamus in organizing the paradoxical phase of sleep. Neurosci Behav Physiol 34(1):29–35PubMedCrossRefGoogle Scholar
  127. Sutherland RC, Juss TS, Wakerley JB (1987) Prolonged electrical stimulation of the nipples evokes intermittent milk ejection in the anaesthetised lactating rat. Exp Brain Res 66(1):29–34PubMedCrossRefGoogle Scholar
  128. Takase K, Kikuchi K, Tsuneoka Y, Oda S, Kuroda M, Funato H (2014) Meta-analysis of melanin-concentrating hormone signaling-deficient mice on behavioral and metabolic phenotypes. PLoS One 9(6):e99961PubMedPubMedCentralCrossRefGoogle Scholar
  129. Tan CP, Sano H, Iwaasa H, Pan J, Sailer AW, Hreniuk DL, Feighner SD, Palyha OC, Pong SS, Figueroa DJ, Austin CP, Jiang MM, Yu H, Ito J, Ito M, Ito M, Guan XM, MacNeil DJ, Kanatani A, Van der Ploeg LH, Howard AD (2002) Melanin-concentrating hormone receptor subtypes 1 and 2: species-specific gene expression. Genomics 79(6):785–792PubMedCrossRefGoogle Scholar
  130. Terkel J, Bridges RS, Sawyer CH (1979) Effects of transecting lateral neural connections of the medial preoptic area on maternal behavior in the rat: nest building, pup retrieval and prolactin secretion. Brain Res 169(2):369–380PubMedCrossRefPubMedCentralGoogle Scholar
  131. Thornburg KL, Bagby SP, Giraud GD (2006) Maternal adaptation to pregnancy. In: Neill JD (ed) Knobil and Neill’s physiology of reproduction. Elsevier, St. Louis, MO, pp 2899–2924CrossRefGoogle Scholar
  132. Torterolo P, Benedetto L, Lagos P, Sampogna S, Chase MH (2009a) State-dependent pattern of Fos protein expression in regionally-specific sites within the preoptic area of the cat. Brain Res 1267:44–56PubMedCrossRefGoogle Scholar
  133. Torterolo P, Sampogna S, Chase MH (2009b) MCHergic projections to the nucleus pontis oralis participate in the control of active (REM) sleep. Brain Res 1268:76–87PubMedCrossRefGoogle Scholar
  134. Torterolo P, Lagos P, Monti JM (2011) Melanin-concentrating hormone: a new sleep factor? Front Neurol 2:14PubMedPubMedCentralCrossRefGoogle Scholar
  135. Torterolo P, Scorza C, Lagos P, Urbanavicius J, Benedetto L, Pascovich C, Lopez-Hill X, Chase MH, Monti JM (2015) Melanin-concentrating hormone (MCH): role in REM sleep and depression. Front Neurosci 9:475PubMedPubMedCentralCrossRefGoogle Scholar
  136. Trulson ME (1985) Activity of dopamine-containing substantia nigra neurons in freely moving cats. Neurosci Biobehav Rev 9(2):283–297PubMedCrossRefGoogle Scholar
  137. Trulson ME, Preussler DW (1984) Dopamine-containing ventral tegmental area neurons in freely moving cats: activity during the sleep-waking cycle and effects of stress. Exp Neurol 83(2):367–377PubMedCrossRefGoogle Scholar
  138. Trulson ME, Preussler DW, Howell GA (1981) Activity of substantia nigra units across the sleep-waking cycle in freely moving cats. Neurosci Lett 26(2):183–188PubMedCrossRefGoogle Scholar
  139. Tsunematsu T, Ueno T, Tabuchi S, Inutsuka A, Tanaka KF, Hasuwa H, Kilduff TS, Terao A, Yamanaka A (2014) Optogenetic manipulation of activity and temporally controlled cell-specific ablation reveal a role for MCH neurons in sleep/wake regulation. J Neurosci 34(20):6896–6909PubMedPubMedCentralCrossRefGoogle Scholar
  140. Verret L, Goutagny R, Fort P, Cagnon L, Salvert D, Leger L, Boissard R, Salin P, Peyron C, Luppi PH (2003) A role of melanin-concentrating hormone producing neurons in the central regulation of paradoxical sleep. BMC Neurosci 4:19PubMedPubMedCentralCrossRefGoogle Scholar
  141. Vetrivelan R, Kong D, Ferrari LL, Arrigoni E, Madara JC, Bandaru SS, Lowell BB, Lu J, Saper CB (2016) Melanin-concentrating hormone neurons specifically promote rapid eye movement sleep in mice. Neuroscience 336:102–113PubMedPubMedCentralCrossRefGoogle Scholar
  142. Voloschin LM, Tramezzani JH (1979) Milk ejection reflex linked to slow wave sleep in nursing rats. Endocrinology 105(5):1202–1207PubMedCrossRefGoogle Scholar
  143. Von Economo C (1930) Sleep as a problem of localization. J Nerv Ment Dis 71:249–259CrossRefGoogle Scholar
  144. Wakerley JB (1996) Milk ejection and its control. In: Knobil E, Neill JD (eds) The physiology of reproduction. Academic, New York, pp 3129–3191Google Scholar
  145. Wightman RM, Robinson DL (2002) Transient changes in mesolimbic dopamine and their association with “reward”. J Neurochem 82(4):721–735PubMedCrossRefGoogle Scholar
  146. Willie JT, Sinton CM, Maratos-Flier E, Yanagisawa M (2008) Abnormal response of melanin-concentrating hormone deficient mice to fasting: hyperactivity and rapid eye movement sleep suppression. Neuroscience 156(4):819–829PubMedPubMedCentralCrossRefGoogle Scholar
  147. Zarrow MX, Denenberg VH, Anderson CO (1965) Rabbit: frequency of suckling in the pup. Science 150(3705):1835–1836PubMedCrossRefGoogle Scholar
  148. Zhao ZJ, Chi QS, Cao J (2010) Milk energy output during peak lactation in shaved Swiss mice. Physiol Behav 101(1):59–66PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Luciana Benedetto
    • 1
    Email author
  • Pablo Torterolo
    • 1
  • Annabel Ferreira
    • 2
  1. 1.Department of Physiology, School of MedicineUniversity of the RepublicMontevideoUruguay
  2. 2.Facultad de Ciencias, Sección de Fisiología y NutriciónUniversidad de la RepúblicaMontevideoUruguay

Personalised recommendations