Broccoli (Brassica oleracea) as a Preventive Biomaterial for Cancer

  • Sithara Suresh
  • Mostafa I. Waly
  • Mohammad Shafiur Rahman


Cancer is one of the major causes of morbidity and mortality worldwide. However, proper preventive steps could be one of the options to prevent its occurrence. Currently, vegetables and fruits high in potential functional components are being reported as chemopreventive potential. Broccoli contains a number of functional properties including anticancer activity. Sulforaphane, an active potential component in broccoli and other isothiocyanates, showed evidence to inhibit cancer by interfering with multiple cellular targets and mechanisms. This chapter provides detailed information on its bioactive components and its anticancer properties.


Sulforaphane Multiple Cellular Targets Fresh Broccoli Broccoli Sprouts Erucin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Latte KP, Appel KE, Lampen A. Health benefits and possible risks of broccoli—an overview. Food Chem Toxicol. 2011;49:3287–309.CrossRefPubMedGoogle Scholar
  2. 2.
    Lee SG, Kim JH, Son MJ, Lee EJ, Park WD, Kim JB, Lee SP, Lee IS. Influence of extraction method on quality and functionality of broccoli juice. Prev Nutr Food Sci. 2013;18(2):133–8.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    El-Magd MMA. Evaluation of some broccoli cultivars growth, head yield and quality under different planting dates. J Appl Sci Res. 2013;9(11):5730–6.Google Scholar
  4. 4.
    Rybarczyk-Plonska A. Health-related compounds in broccoli (Brassica oleracea L. var. italica) as affected by postharvest temperature, light and UV-B irradiation, Ph.D. thesis. 2016. ISBN 978–82–575-1334-4.Google Scholar
  5. 5.
    Suresh S, Al-Habsi N, Guizani N, Rahman MS. Thermal characteristics and state diagram of freeze-dried broccoli: freezing curve, maximal-freeze-concentration condition, glass line and solids-melting. Thermochim Acta. 2017;655:129–36.CrossRefGoogle Scholar
  6. 6.
    Ares AM, Nozal MJ, Bernal J. Extraction, chemical characterization and biological activity determination of broccoli health promoting compounds. J Chromatogr A. 2013;1313:78–95.CrossRefPubMedGoogle Scholar
  7. 7.
    Yu D, Zhang X, Gao YT, Li H, Yang G, Huang J, Zheng W, Xiang YB, Shu XO. Fruit and vegetable intake and risk of coronary heart disease: results from prospective cohort studies of Chinese adults in Shanghai. Br J Nutr. 2014;111:353–62.CrossRefPubMedGoogle Scholar
  8. 8.
    Wootten-Beard PC, Ryan L. Improving public health?: the role of antioxidant-rich fruit and vegetable beverages. Food Res Int. 2011;44:3135–48.CrossRefGoogle Scholar
  9. 9.
    Bergquist SAM, Gertsson UE, Olsson ME. Influence of growth stage and postharvest storage on ascorbic acid and carotenoid content and visual quality of baby spinach (Spinacia oleracea L.). J Sci Food Agric. 2006;86:346–55.CrossRefGoogle Scholar
  10. 10.
    Turrini E, Ferruzzi L, Fimognari C. Potential effects of pomegranate polyphenols in cancer prevention and therapy. Oxidative Med Cell Longev. 2015;2015:938475.CrossRefGoogle Scholar
  11. 11.
    Sestili P, Fimognari C. Cytotoxic and antitumor activity of sulforaphane: the role of reactive oxygen species. Biomed Res Int. 2015;2015:1–9.CrossRefGoogle Scholar
  12. 12.
    Thun MJ, DeLancey JO, Center MM, Jemal A, Ward EM. The global burden of cancer: priorities for prevention. Carcinogenesis. 2010;31:100–10.CrossRefPubMedGoogle Scholar
  13. 13.
    Marrett LD, De P, Airia P, Dryer D. Cancer in Canada in 2008. CMAJ. 2008;179:1163–70.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Rybarczyk-Plonska A, Hansen MK, Wold AB, Hagen SF, Borge GIA, Bengtsson GB. Vitamin C in broccoli (Brassica oleracea L. var. italica) flower buds as affected by postharvest light, UV-B irradiation and temperature. Postharvest Biol Technol. 2014;98:82–9.CrossRefGoogle Scholar
  15. 15.
    Moreno DA, Carvajal M, Lopez-Berenguer C, Garcıa-Viguera C. Chemical and biological characterisation of nutraceutical compounds of broccoli. J Pharm Biomed Anal. 2006;41:1508–22.CrossRefPubMedGoogle Scholar
  16. 16.
    Madhu KA. Proximate composition, available carbohydrates, dietary fibre and anti-nutritional factors of broccoli (Brassica oleracea l var. Italica plenca) leaf and floret powder. Biosci Discov. 2014;5(1):45–9.Google Scholar
  17. 17.
    Porter Y. Antioxidant properties of green broccoli and purple-sprouting broccoli under different cooking conditions. Biosci Horiz. 2012;5:1–11.CrossRefGoogle Scholar
  18. 18.
    Roe M, Church S, Pinchen H, Finglas P. Nutrient analysis of fruit and vegetables. 2013. Accessed December 2016.
  19. 19.
    Campbell B, Han DY, Triggs CM, Fraser AG, Ferguson LR. Brassicaceae: nutrient analysis and investigation of tolerability in people with Crohn’s disease in a New Zealand study. Func Foods Health Dis. 2012;2:460–86.Google Scholar
  20. 20.
    Houben K, Jolie RP, Fraeye I, Loey AMV, Hendrickx ME. Comparative study of the cell wall composition of broccoli, carrot, and tomato: structural characterization of the extractable pectins and hemicelluloses. Carbohydr Res. 2011;346:1105–11.CrossRefPubMedGoogle Scholar
  21. 21.
    Allaith AAA. Antioxidant activity of Bahraini date palm (Phoenix dactylifera L.) fruit of various cultivars. Int J Food Sci Technol. 2008;43:1033–40.CrossRefGoogle Scholar
  22. 22.
    Rice-Evans C, Miller N, Paganga G. Antioxidant properties of phenolic compounds. Trends Plant Sci. 1997;2:152–9.CrossRefGoogle Scholar
  23. 23.
    Arts ICW, Hollman PCH. Polyphenols and disease risk in epidemiologic studies. Am J Clin Nutr. 2005;81:317–25.CrossRefGoogle Scholar
  24. 24.
    WHO. Measuring intake of fruits and vegetables. 2005. Accessed 8 Aug 2017.
  25. 25.
    Tiveron AP, Melo PS, Bergamaschi KB, Vieira TMFS, Regitano-d’ Arce MAB, Alencar SM. Antioxidant activity of Brazilian vegetables and its relation with phenolic composition. Int J Mol Sci. 2012;13:8943–57.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Han D, Row KH. Separation and purification of sulforaphane from broccoli by solid phase extraction. Int J Mol Sci. 2011;12:1854–61.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Liang H, Yuan QP, Dong HR, Liu YM. Determination of sulforaphane in broccoli and cabbage by high-performance liquid chromatography. J Food Compos Anal. 2006;19:473–6.CrossRefGoogle Scholar
  28. 28.
    Geurrero-Beltran CE, Calderon-Oliver M, Pedraza-Chaverri J, Chirino YI. Protective effect of sulforaphane against oxidative stress: recent advances. Exp Toxicol Pathol. 2012;64:503–8.CrossRefGoogle Scholar
  29. 29.
    Guo Q, Guo L, Wang Z, Zhuang Y, Gu Z. Response surface optimization and identification of isothiocyanates produced from broccoli sprouts. Food Chem. 2013;141:1580–6.CrossRefPubMedGoogle Scholar
  30. 30.
    Melchini A, Traka MH. Biological profile of erucin: a new promising anticancer agent from cruciferous vegetables. Toxins. 2010;2:593–612.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Li Z, Liu Y, Fang Z, Yang L, Zhuang M, Zhang Y, Sun P. Development and verification of sulforaphane extraction method in cabbage (Brassica oleracea L. var. capitata) and broccoli (Brassica oleracea L. var. italic planch.). J Med Plants Res. 2012;6:4796–803.Google Scholar
  32. 32.
    You Y, Wu Y, Mao J, Zou L, Liu S. Screening of Chinese Brassica species for anti-cancer sulforaphane and erucin. Afr J Biotechnol. 2008;7:147–52.Google Scholar
  33. 33.
    Jeffery EH, Brown AF, Kurilich AC, Keck AS, Matusheski N, Klein BP, Juvik JA. Variation in content of bioactive components in broccoli. J Food Compos Anal. 2003;16:323–30.CrossRefGoogle Scholar
  34. 34.
    Nemoto K. G2/M accumulation in prostate cancer cell line PC-3 is induced by Cdc25 inhibitor 7-chloro-6-(2-morpholin-4-ylethylamino) quinoline-5, 8-dione (DA 3003-2). Exp Ther Med. 2010;1:647–50.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Hwang JH, Lim SB. Antioxidant and anticancer activities of broccoli by-products from different cultivars and maturity stages at harvest. Prev Nutr Food Sci. 2015;20:8–14.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Singh SV, Herman-Antosiewicz A, Singh AV, Lew KL, Srivastava SK, Kamath R, Brown KD, Zhang L, Baskaran R. Sulforaphane-induced G2/M phase cell cycle arrest involves checkpoint kinase 2-mediated phosphorylation of cell division cycle 25C. J Biol Chem. 2004;279:25813–22.CrossRefPubMedGoogle Scholar
  37. 37.
    Qazi A, Pal J, Maitah M, Fulciniti M, Pelluru D, Nanjappa P, Lee S, Batchu RB, Prasad M, Bryant CS, Rajput S, Gryaznov S, Beer DG, Weaver DW, Munshi NC, Goyal RK, Shammas MA. Anticancer activity of a broccoli derivative, sulforaphane, in barrett adenocarcinoma: potential use in chemoprevention and as adjuvant in chemotherapy. Transl Oncol. 2010;3:389–99.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Pledgie-Tracy A, Sobolewski MD, Davidson NE. Sulforaphane induces cell type-specific apoptosis in human breast cancer cell lines. Mol Cancer Ther. 2007;6:1013–21.CrossRefPubMedGoogle Scholar
  39. 39.
    Shivale N, Shah S, Sampat K, Deshpande K. Broad range activity of sulforaphane extracted from broccoli. Bionano Frontier. 2014;7:82–5.Google Scholar
  40. 40.
    Ullah MF. Sulforaphane (SFN): an isothiocyanate in a cancer chemoprevention paradigm. Medicines. 2015;2:141–56.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Legube G, Trouche D. Regulating histone acetyltransferases and deacetylases. EMBO Rep. 2003;4:944–7.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Clarke JD, Hsu A, Yu Z, Dashwood RH, Ho E. Differential effects of sulforaphane on histone deacetylases, cell cycle arrest and apoptosis in normal prostate cells versus hyperplastic and cancerous prostate cells. Mol Nutr Food Res. 2011;55:999–1009.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Gamet-Payrastre L, Li P, Lumeau S, Cassar G, Dupont MA, Chevolleau S, Gasc N, Tulliez J, Tercé F. Sulforaphane, a naturally occurring isothiocyanate, induces cell cycle arrest and apoptosis in HT29 human colon cancer cells. Cancer Res. 2000;60:1426–33.PubMedGoogle Scholar
  44. 44.
    Pappa G, Lichtenberg M, Iori R, Barillari J, Bartsch H, Gerhäuser C. Comparison of growth inhibition profiles and mechanisms of apoptosis induction in human colon cancer cell lines by isothiocyanates and indoles from Brassicaceae. Mutat Res. 2006;599:76–87.CrossRefPubMedGoogle Scholar
  45. 45.
    Khoobchandani M, Zambre A, Katti K, Lin CH, Katti KV. Green nanotechnology from Brassicaceae: development of broccoli phytochemicals-encapsulated gold nanaoparticles and their applications in nanomedicine. Int J Green Nanotechnol. 2013;1:1–15.CrossRefGoogle Scholar
  46. 46.
    Zhang Y, Kensler TW, Cho CG, Posner GH, Talalay P. Anticarcinogenic activities of sulforaphane and structurally related synthetic norbornyl isothiocyanates. Proc Natl Acad Sci. 1994;91:3147–50.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Suzuki R, Kohno H, Sugie S, Okada T, Tanaka T. Suzuki et al. (2004) studied the inhibitory effect of broccoli sprouts powder on azoxymethane (AOM) induced colonic aberrant crypt foci (ACF). J Toxicol Pathol. 2004;17:119–26.CrossRefGoogle Scholar
  48. 48.
    Chung FL, Conaway CC, Rao CV, Reddy BS. Chemoprevention of colonic aberrant crypt foci in Fischer rats by sulforaphane and phenethyl isothiocyanate. Carcinogenesis. 2000;21:2287–91.CrossRefPubMedGoogle Scholar
  49. 49.
    Morse MA, Amin SG, Hecht SS, Chung FL. Effects of aromatic isothiocyanates on tumorigenicity, 06-methylguanine formation, and metabolism of the tobacco-specific nitrosamine 4-(methylnitrosamino)-l-(3-pyridyl)-l-butanone in A/J mouse lung. Cancer Res. 1989;49:2894–7.PubMedGoogle Scholar
  50. 50.
    Keum YS, Khor TO, Lin W, Shen G, Kwon KH, Barve A, Li W, Kong AN. Pharmacokinetics and pharmacodynamics of broccoli sprouts on the suppression of prostate cancer in transgenic adenocarcinoma of mouse prostate (TRAMP) mice: implication of induction of Nrf2, HO-1 and apoptosis and the suppression of Akt-dependent kinase pathway. Pharm Res. 2009;26:2324–31.CrossRefPubMedGoogle Scholar
  51. 51.
    Finley JW, Ip C, Lisk DJ, Davis CD, Hintze KJ, Whanger PD. Cancer-protective properties of high-selenium broccoli. J Agric Food Chem. 2001;49:2679–83.CrossRefPubMedGoogle Scholar
  52. 52.
    Myzak MC, Dashwood WM, Orner GA, Ho E, Dashwood RH. Sulforaphane inhibits histone deacetylase in vivo and suppresses tumorigenesis in apc-minus mice. FASEB J. 2006;20:506–8.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Smith TK, Lund EK, Johnson IT. Inhibition of dimethylhydrazine-induced aberrant crypt foci and induction of apoptosis in rat colon following oral administration of the glucosinolate sinigrin. Carcinogenesis. 1998;19:267–73.CrossRefPubMedGoogle Scholar
  54. 54.
    Balansky R, Ganchev G, Iltcheva M, Steele VE, Flora SD. Prevention of cigarette smoke–induced lung tumors in mice by budesonide, phenethyl isothiocyanate, and N-acetylcysteine. Int J Cancer. 2010;126:1047–54.PubMedPubMedCentralGoogle Scholar
  55. 55.
    Conaway CC, Wang CX, Pittman B, Yang YM, Schwartz JE, Tian D, McIntee EJ, Hecht SS, Chung FL. Phenethyl isothiocyanate and sulforaphane and their N-acetylcysteine conjugates inhibit malignant progression of lung adenomas induced by tobacco carcinogens in A/J mice. Cancer Res. 2005;65:8548–57.CrossRefPubMedGoogle Scholar
  56. 56.
    Gills JJ, Jeffery EH, Matusheski NV, Moon RC, Lantvit DD, Pezzuto J m. Sulforaphane prevents mouse skin tumorigenesis during the stage of promotion. Cancer Lett. 2006;236:72–9.CrossRefPubMedGoogle Scholar
  57. 57.
    Samaha HS, Kelloff GJ, Steele V, Rao CV, Reddy BS. Modulation of apoptosis by sulindac, curcumin, phenylethyl-3-methylcaffeate, and 6-phenylhexyl isothiocyanate: apoptotic index as a biomarker in colon cancer chemoprevention and promotion. Cancer Res. 1997;57:1301–5.PubMedGoogle Scholar
  58. 58.
    Izzotti A, Balansky RM, Agostini FD, Bennicelli C, Myers SR, Grubbs CJ, Lubet RA, Kelloff GJ, Flora SD. Modulation of biomarkers by chemopreventive agents in smoke-exposed rats. Cancer Res. 2001;61:2472–9.PubMedGoogle Scholar
  59. 59.
    Munday R, Mhawech-Fauceglia P, Munday CM, Paonessa JD, Tang L, Munday JS, Lister C, Wilson P, Fahey JW, Davis W, Zhang Y. Inhibition of urinary bladder carcinogenesis by broccoli sprouts. Cancer Res. 2008;68:1593–600.CrossRefPubMedGoogle Scholar
  60. 60.
    Cornblatt BS, Ye L, Dinkova-Kostova AT, Erb M, Fahey JW, Singh NK, Chen MA, Stierer T, Garrett-Mayer E, Argani P, Davidson NE, Talalay P, Kensler TW, Visvanathan K. Preclinical and clinical evaluation of sulforaphane for chemoprevention in the breast. Carcinogenesis. 2007;28:1485–90.CrossRefPubMedGoogle Scholar
  61. 61.
    Chen YJ, Walliq MA, Jeffery EH. Dietary broccoli lessens development of fatty liver and liver cancer in mice given diethylnitrosamine and fed a western or control diet. J Nutr. 2016;146:542–50.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Singh S, Singh K. Cancer chemoprevention with dietary isothiocyanates mature for clinical translational research. Carcinogenesis. 2012;33:1833–42.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Kensler WT, Chen JG, Egner PA, Fahey JW, Jacobson LP, Stephenson KK, Ye L, Coady JL, Wang JB, Wu Y, Sun Y, Zhang QN, Zang BC, Zhu YR, Qian GS, Carmella SG, Hecht SS, Benning L, Gange SJ, Groopman JD, Talalay P. Effects of glucosinolate-rich broccoli sprouts on urinary levels of aflatoxin-DNA adducts and phenanthrene tetraols in a randomized clinical trial in He Zuo township, Qidong, People’s Republic of China. Cancer Epidemiol Biomark Prev. 2005;14:2605–13.CrossRefGoogle Scholar
  64. 64.
    Cipolla BG, Mandron E, Lefort JM, Coadou Y, Negra ED, Corbel L, Scodan RL, Azzouzi AR, Mottet N. Effect of sulforaphane in men with biochemical recurrence after radical prostatectomy. Cancer Prev Res. 2015;8:712–9.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Sithara Suresh
    • 1
  • Mostafa I. Waly
    • 1
  • Mohammad Shafiur Rahman
    • 1
  1. 1.Department of Food Science and Nutrition, College of Agricultural and Marine SciencesSultan Qaboos UniversityMuscatOman

Personalised recommendations