Advertisement

Energy Future: Innovation Based on Time, Synergy and Innovation Factors

  • Eunika Mercier-Laurent
  • Gülgün Kayakutlu
Chapter
Part of the Studies in Systems, Decision and Control book series (SSDC, volume 149)

Abstract

Computational intelligence has been widely used to analyse the complex problems in the energy field. Examples of using different methods in energy applications for economic, strategic and operational analysis in the energy field. Forecasting and Performance analysis examples are shown as a support for decision makers. This article is the conclusion of the book defining a new vision for the energy future based on innovation. A computational model is proposed to give a new dimension for the decision makers in the energy field. The novel mathematical model is defined to consider the energy future based on the innovation impacts complemented with the time, synergy and system approaches.

References

  1. Adler, C. O., & Dagli, C. H. (2012). Enabling systems and the adaptability of complex systems-of-systems. Procedia Computer Science, 12, 31–36.  https://doi.org/10.1016/j.procs.2012.09.025.CrossRefGoogle Scholar
  2. Araújo, K. (2014). The emerging field of energy transitions: Progress, challenges, and opportunities. Energy Research & Social Science, 1, 112–121.  https://doi.org/10.1016/j.erss.2014.03.002.CrossRefGoogle Scholar
  3. Burke, M. J., & Stephens, J. C. (2017). Political power and renewable energy futures: A critical review. Energy Research & Social Science.  https://doi.org/10.1016/j.erss.2017.10.018.Google Scholar
  4. Crandall, K. et al. (2014). Turning a vision to reality: Boulder’s utility of the future. Distributed Generation and its Implications for the Utility Industry, 435–452.  https://doi.org/10.1016/b978-0-12-800240-7.00022-9.
  5. Duxbury, N., Kangas, A., & De Beukelaer, C. (2017). Cultural policies for sustainable development: Four strategic paths. International Journal of Cultural Policy, 23(2), 214–230.  https://doi.org/10.1080/10286632.2017.1280789.Google Scholar
  6. Gaziulusoy, A. I., & Brezet, H. (2015). Design for system innovations and transitions: A conceptual framework integrating insights from sustainablity science and theories of system innovations and transitions. Journal of Cleaner Production, 108, 1–11.  https://doi.org/10.1016/j.jclepro.2015.06.066.CrossRefGoogle Scholar
  7. Grubb, M., McDowall, W., & Drummond, P. (2017). On order and complexity in innovations systems: Conceptual frameworks for policy mixes in sustainability transitions. Energy Research and Social Science.  https://doi.org/10.1016/j.erss.2017.09.016.Google Scholar
  8. Johansen, J. P., & Røyrvik, J. (2014). Organizing synergies in integrated energy systems. Energy Procedia, 58, 24–29.  https://doi.org/10.1016/j.egypro.2014.10.404.CrossRefGoogle Scholar
  9. Juárez, A. A., Araújo, A. M., Rohatgi, J. S., & de Oliveira Filho, O. D. Q. (2014). Development of the wind power in Brazil: Political, social and technical issues. Renewable and Sustainable Energy Reviews, 39, 828–834.  https://doi.org/10.1016/j.rser.2014.07.086.CrossRefGoogle Scholar
  10. Kayakutlu, G. & Mercier-Laurent, E. (2017). 5-future of energy. Intelligence in Energy, 153–198.  https://doi.org/10.1016/B978-1-78548-039-3.50005-5.
  11. Koirala, B. P., Koliou, E., Friege, J., Hakvoort, R. A., & Herder, P. M. (2016). Energetic communities for community energy: A review of key issues and trends shaping integrated community energy systems. Renewable and Sustainable Energy Reviews, 56, 722–744.  https://doi.org/10.1016/j.rser.2015.11.080.CrossRefGoogle Scholar
  12. Kuzemko, C., Lockwood, M., Mitchell, C., & Hoggett, R. (2016). Governing for sustainable energy system change: Politics, contexts and contingency. Energy Research & Social Science, 12, 96–105.  https://doi.org/10.1016/j.erss.2015.12.022.CrossRefGoogle Scholar
  13. Kwapień, J., & Drożdż, S. (2012). Physical approach to complex systems. Physics Reports, 515(3–4), 115–226.  https://doi.org/10.1016/j.physrep.2012.01.007.MathSciNetCrossRefGoogle Scholar
  14. Lee, C.-C., & Chang, C.-P. (2008). Energy consumption and economic growth in Asian economies: A more comprehensive analysis using panel data. Resource and Energy Economics, 30(1), 50–65.  https://doi.org/10.1016/j.reseneeco.2007.03.003.CrossRefGoogle Scholar
  15. Mercier-Laurent, E. (2009). Digital ecosystems for the knowledge economy, invited talk MEDES 09. http://sigrappfr.acm.org/MEDES/09/keynotes.php.
  16. Mercier-Laurent, E. (2011). Innovation ecosystems. Wiley.  https://doi.org/10.1002/9781118603048.Google Scholar
  17. Mercier-Laurent, E. (2015). The innovation biosphere: Planet and brains in the digital era. Wiley-ISTE. ISBN: 978-1-848-21556-6.Google Scholar
  18. Miller, C. A., O’Leary, J., Graffy, E., Stechel, E. B., & Dirks, G. (2015). Narrative futures and the governance of energy transitions. Futures, 70, 65–74.  https://doi.org/10.1016/j.futures.2014.12.001.CrossRefGoogle Scholar
  19. Nagurney, A. (1999). Network economics: A variational inequality approach. Finance.  https://doi.org/10.1007/978-94-011-2178-1.zbMATHGoogle Scholar
  20. Navarro-González, F. J., & Villacampa, Y. (2013). Generation of representation models for complex systems using Lagrangian functions. Advances in Engineering Software, 64, 33–37.  https://doi.org/10.1016/j.advengsoft.2013.04.015.CrossRefGoogle Scholar
  21. Peck, P., & Parker, T. (2015). The “sustainable energy concept”—Making sense of norms and co-evolution within a large research facility’s energy strategy. Journal of Cleaner Production.  https://doi.org/10.1016/j.jclepro.2015.09.121.Google Scholar
  22. Rammel, C., Stagl, S., & Wilfing, H. (2007). Managing complex adaptive systems—A co-evolutionary perspective on natural resource management. Ecological Economics, 63(1), 9–21.  https://doi.org/10.1016/j.ecolecon.2006.12.014.CrossRefGoogle Scholar
  23. Ruotsalainen, J., Karjalainen, J., Child, M., & Heinonen, S. (2017). Culture, values, lifestyles, and power in energy futures: A critical peer-to-peer vision for renewable energy. Energy Research & Social Science, 34, 231–239.  https://doi.org/10.1016/j.erss.2017.08.001.CrossRefGoogle Scholar
  24. Sgobbi, A., Simões, S. G., Magagna, D., & Nijs, W. (2016). Assessing the impacts of technology improvements on the deployment of marine energy in Europe with an energy system perspective. Renewable Energy, 89, 515–525.  https://doi.org/10.1016/j.renene.2015.11.076.CrossRefGoogle Scholar
  25. Shaikh, P. H., Nor, N. B. M., Sahito, A. A., Nallagownden, P., Elamvazuthi, I., & Shaikh, M. S. (2017). Building energy for sustainable development in Malaysia: A review. Renewable and Sustainable Energy Reviews, 75, 1392–1403.  https://doi.org/10.1016/j.rser.2016.11.128.CrossRefGoogle Scholar
  26. Toba, A.-L., & Seck, M. (2016). Modeling social, economic, technical & environmental components in an energy system. Procedia Computer Science, 95, 400–407.  https://doi.org/10.1016/j.procs.2016.09.353.CrossRefGoogle Scholar
  27. United Nations. (2017). Katowice announced as host venue of UN climate change conference COP 24 in 2018. Available at: http://newsroom.unfccc.int/unfccc-newsroom/katowice-announced-as-host-venue-of-un-climate-change-conference-cop-24-in-2018/. Accessed: December 10, 2017.

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.CReSTIC EA 3804 UFR Sciences Exactes et NaturellesReims CEDEX 2France
  2. 2.Istanbul Technical University ArdennesMacka, Besiktas, IstanbulTurkey

Personalised recommendations