Advertisement

Fuzzy Collective Intelligence for Performance Measurement in Energy Systems

  • Cengiz Kahraman
  • Sezi Çevik Onar
  • Basar Oztaysi
Chapter
Part of the Studies in Systems, Decision and Control book series (SSDC, volume 149)

Abstract

Collective intelligence (CI) means that a group of people or animals can solve problems efficiently and offer greater insight and a better answer than any individual could provide. Fuzzy sets have been integrated with collective intelligence techniques in order to allow uncertain, vague imprecise and incomplete information to be incorporated to the CI models. The fuzzy CI techniques have been rarely used in the solution of energy problems even they still present new research opportunities to researchers. This chapter gives the results of the literature review on fuzzy CI research for energy systems.

Keywords

Collective intelligence Fuzzy sets Performance Energy systems Particle swarm optimization 

References

  1. Abd, S. K., Al-Haddad, S. A. R., Hashim, F., Abdullah, A. B. H. J., & Yussof, S. (2017). An effective approach for managing power consumption in cloud computing infrastructure. Journal of Computational Science, 21, 349–360.CrossRefGoogle Scholar
  2. Aghbashlo, M., Hosseinpour, S., Tabatabaei, M., Younesi, H., & Najafpour, G. (2016). On the exergetic optimization of continuous photobiological hydrogen production using hybrid ANFIS-NSGA-II (adaptive neuro-fuzzy inference system-non-dominated sorting genetic algorithm-II). Energy, 96, 507–520.CrossRefGoogle Scholar
  3. Ahmed, K., Ewees, A. A., Abd El Aziz, M., Hassanien, A. E., Gaber, T., Tsai, P.-W., et al. (2017). A hybrid krill-ANFIS model for wind speed forecasting. Advances in Intelligent Systems and Computing, 533, 365–372.CrossRefGoogle Scholar
  4. Alzoubi, I., Delavar, M., Mirzaei, F., & Nadjar Arrabi, B. (2017). Integrating artificial neural network and imperialist competitive algorithm (ICA), to predict the energy consumption for land leveling. International Journal of Energy Sector Management, 11(4), 522–540.CrossRefGoogle Scholar
  5. Amrani, R. E., Yahyaouy, A., & Tairi, H. (2017). Hybrid strategy based on MAS for an intelligent energy management: Application to an electric vehicle. Intelligent Systems and Computer Vision, ISCV 2017, art. no. 8054917,Google Scholar
  6. Aziz, M. A. E., Hemdan, A. M., Ewees, A. A., Elhoseny, M., Shehab, A., Hassanien, A. E., et al. (2017). Prediction of biochar yield using adaptive neuro-fuzzy inference system with particle swarm optimization. Proceedings—2017 IEEE PES-IAS PowerAfrica Conference: Harnessing Energy, Information and Communications Technology (ICT) for Affordable Electrification of Africa, PowerAfrica 2017, art. no. 7991209, pp. 115–120.Google Scholar
  7. Basterrech, S. (2017). Geometric particle swarm optimization and reservoir computing for solar power forecasting. Advances in Intelligent Systems and Computing, 576, 88–97.CrossRefGoogle Scholar
  8. Cha, H. J., Won, D. J., Kim, S. H., Chung, I. Y., & Han, B. M. (2015). Multi-agent system-based microgrid operation strategy for demand response. Energies, 8(12), 14272–14286.CrossRefGoogle Scholar
  9. Chen, X., Chen, X., She, J., & Wu, M. (2017a). Hybrid multistep modeling for calculation of carbon efficiency of iron ore sintering process based on yield prediction. Neural Computing and Applications, 28(6), 1193–1207.CrossRefGoogle Scholar
  10. Chen, Z., Xiong, R., & Cao, J. (2016). Particle swarm optimization-based optimal power management of plug-in hybrid electric vehicles considering uncertain driving conditions. Energy, 96, 197–208.CrossRefGoogle Scholar
  11. Chen, Z., Xiong, R., Wang, C., & Cao, J. (2017b). An on-line predictive energy management strategy for plug-in hybrid electric vehicles to counter the uncertain prediction of the driving cycle. Applied Energy, 185, 1663–1672.CrossRefGoogle Scholar
  12. Chohra, A., Madani, K., & Kanzari, D. (2010). Fuzzy cognitive and social negotiation agent strategy for computational collective intelligence. Lecture Notes in Computer Science, Vol. 6220 LNCS, pp. 143–159.Google Scholar
  13. Dell’Orco, M., Marinelli, M., & Altieri, M. G. (2017). Solving the gate assignment problem through the Fuzzy Bee Colony Optimization. Transportation Research Part C: Emerging Technologies, 80, 424–438.CrossRefGoogle Scholar
  14. Dounia, E. B., Ali, Y., & Jaouad, B. (2017). Multi-agent system based on the fuzzy control and extreme learning machine for intelligent management in hybrid energy system. 2017 Intelligent Systems and Computer Vision, ISCV 2017, art. no. 8054922.Google Scholar
  15. Fevrier, C. C., & Valdez Castillo, O. (2016). Optimization of fuzzy controller design using a new bee colony algorithm with fuzzy dynamic parameter adaptation. Applied Soft Computing, 43, 131–142.CrossRefGoogle Scholar
  16. Fidanova, S., Atanassov, K., & Marinov, P. (2012). Intuitionistic fuzzy estimation of the ant colony optimization starting points (Conference Paper), Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Vol. 7116 LNCS, pp. 222–229. 8th International Conference on Large-Scale Scientific Computations, LSSC 2011; Sozopol; Bulgaria; 6 June 2011 through 10 June 2011; Code 89998.Google Scholar
  17. González, B., Valdez, F., Melin, P., & Prado-Arechigab, G. (2015). Fuzzy logic in the gravitational search algorithm enhanced using fuzzy logic with dynamic alpha parameter value adaptation for the optimization of modular neural networks in echocardiogram recognition. Applied Soft Computing, 37, 245–254.CrossRefGoogle Scholar
  18. Guerrero, M., Castillo, O., & Mario García, M. (2015). Fuzzy dynamic parameters adaptation in the Cuckoo Search Algorithm using fuzzy logic. 2015 IEEE Congress on Evolutionary Computation (CEC), May 25–28, 2015, Sendai, Japan.Google Scholar
  19. Herrera, V., Milo, A., Gaztañaga, H., Etxeberria-Otadui, I., Villarreal, I., & Camblong, H. (2016). Adaptive energy management strategy and optimal sizing applied on a battery-supercapacitor based tramway. Applied Energy, 169, 831–845.CrossRefGoogle Scholar
  20. Hosseinpour, S., Aghbashlo, M., Tabatabaei, M., Younesi, H., Mehrpooya, M., & Ramakrishna, S. (2017). Multi-objective exergy-based optimization of a continuous photobioreactor applied to produce hydrogen using a novel combination of soft computing techniques. International Journal of Hydrogen Energy, 42(12), 8518–8529.CrossRefGoogle Scholar
  21. Huang, C. N., & Chen, Y. S. (2017). Design of magnetic flywheel control for performance improvement of fuel cells used in vehicles. Energy, 118, 840–852.CrossRefGoogle Scholar
  22. Huggett, D. J., Liao, T. W., Wahab, M. A., & Okeil, A. (2017). Prediction of friction stir weld quality without and with signal features. International Journal of Advanced Manufacturing Technology, 1–15.Google Scholar
  23. Hussain, S., Al Alili, A., & Al Qubaisi, A. M. (2015). Optimization based fuzzy resource allocation framework for smart grid. International Conference on Smart Energy Grid Engineering, SEGE 2015, art. no. 7324627.Google Scholar
  24. Ickler, H. (2010). An approach for the visual representation of business models that integrate web-based collective intelligence into value creation. In T. J. Bastiaens, U. Baumöl, & B. J. Krämer (Eds.), On collective intelligence. Advances in intelligent and soft computing (Vol. 76). Berlin, Heidelberg: Springer.Google Scholar
  25. Jędrzejowicz, P., Nguyen, N. T., & Hoang, K. (Eds.). (2011). Computational collective intelligence: technologies and applications. ICCCI 2011, Third International Conference on Computational Collective Intelligence, Gdynia, Poland, September 21–23, 2011, Proceedings, Part II.Google Scholar
  26. Jia, J., Yang, K., Yang, L., Gao, Y., & Li, S. (2017). Designing train-speed trajectory with energy efficiency and service quality. Engineering Optimization, 1–22 (Article in Press).Google Scholar
  27. Kaboli, S. H. A., Fallahpour, A., Selvaraj, J., & Rahim, N. A. (2017). Long-term electrical energy consumption formulating and forecasting via optimized gene expression programming. Energy, 126, 144–164.CrossRefGoogle Scholar
  28. Kanellos, F. D., Anvari-Moghaddam, A., & Guerrero, J. M. (2017). A cost-effective and emission-aware power management system for ships with integrated full electric propulsion. Electric Power Systems Research, 150, 63–75.CrossRefGoogle Scholar
  29. Karavas, C.-S., Kyriakarakos, G., Arvanitis, K. G., & Papadakis, G. (2015). A multi-agent decentralized energy management system based on distributed intelligence for the design and control of autonomous polygeneration microgrids. Energy Conversion and Management, 103(art. no. 7262), 166–179.Google Scholar
  30. Kassa, Y., Zhang, J. H., Zheng, D. H., & Wei, D. (2017). Short term wind power prediction using ANFIS. 2016 IEEE International Conference on Power and Renewable Energy, ICPRE 2016, art. no. 7871238, pp. 388–393.Google Scholar
  31. Khooban, M. H., & Niknam, T. (2015). A new intelligent online fuzzy tuning approach for multi-area load frequency control: Self adaptive modified Bat Algorithm. Electrical Power and Energy Systems, 71, 254–261.CrossRefGoogle Scholar
  32. Leonori, S., Paschero, M., Rizzi, A., & Mascioli, F. M. F. (2017). An optimized microgrid energy management system based on FIS-MO-GA paradigm. IEEE International Conference on Fuzzy Systems, art. no. 8015438,.Google Scholar
  33. Li, L., Huang, H., Lian, J., Yao, B., Zhou, Y., Chang, J., et al. (2014). Research of Ant Colony optimized adaptive control strategy for hybrid electric vehicle. Mathematical Problems in Engineering.Google Scholar
  34. Liu, J., & Lampinen, J. (2005). A fuzzy adaptive differential evolution algorithm. Soft Computing, 9(6), 448–462.CrossRefzbMATHGoogle Scholar
  35. Lo, A. W. (2015). The wisdom of crowds vs. the madness of mobs. In T. W. Malone & M. S. Bernstein (Eds.), Handbook of collective intelligence. Massachusetts London, England: The MIT Press Cambridge.Google Scholar
  36. Malone, T. W., & Bernstein, M. S. (2015). Introduction. In T. W. Malone & M. S. Bernstein (Eds.), Handbook of collective intelligence. Massachusetts London, England: The MIT Press Cambridge.Google Scholar
  37. Mohammadi, M., Abasi, M., & Rozbahani, A. M. (2017). Fuzzy-GA based algorithm for optimal placement and sizing of distribution static compensator (DSTATCOM) for loss reduction of distribution network considering reconfiguration. Journal of Central South University, 24(2), 245–258.CrossRefGoogle Scholar
  38. Moradi, M. H., & Eskandari, M. (2014). A hybrid method for simultaneous optimization of DG capacity and operational strategy in microgrids considering uncertainty in electricity price forecasting. Renewable Energy, 68, 697–714.Google Scholar
  39. Moradi, M. H., Eskandari, M., & Mahdi Hosseinian, S. (2015). Operational strategy optimization in an optimal sized smart microgrid. IEEE Transactions on Smart Grid, 6(3), 1087–1095 (art. no. 6891360).Google Scholar
  40. Navale, R. L., & Nelson, R. M. (2012). Use of genetic algorithms and evolutionary strategies to develop an adaptive fuzzy logic controller for a cooling coil—Comparison of the AFLC with a standard PID controller. Energy and Buildings, 45, 169–180.CrossRefGoogle Scholar
  41. Neshat, M., & Sepidname, G. (2015). A new hybrid optimization method inspired from swarm intelligence: Fuzzy adaptive swallow swarm optimization algorithm. Egyptian Informatics Journal, 16(3), 339–350.CrossRefGoogle Scholar
  42. Panapakidis, I. P., & Dagoumas, A. S. (2017). Day-ahead natural gas demand forecasting based on the combination of wavelet transform and ANFIS/genetic algorithm/neural network model. Energy, 118, 231–245.CrossRefGoogle Scholar
  43. Poursamad, A., & Montazeri, M. (2008). Design of genetic-fuzzy control strategy for parallel hybrid electric vehicles. Control Engineering Practice, 16(7), 861–873.CrossRefGoogle Scholar
  44. Premkumar, K., & Manikandan, B. V. (2016). Bat algorithm optimized fuzzy PD based speed controller for brushless direct current motor. Engineering Science and Technology, an International Journal, 19(2), 818–840.CrossRefGoogle Scholar
  45. Ravadanegh, S. N., Oskuee, M. R. J., & Karimi, M. (2017). Multi-objective planning model for simultaneous reconfiguration of power distribution network and allocation of renewable energy resources and capacitors with considering uncertainties. Journal of Central South University, 24(8), 1837–1849.CrossRefGoogle Scholar
  46. Ravey, A., Blunier, B., & Miraoui, A. (2012). Control strategies for fuel-cell-based hybrid electric vehicles: From offline to online and experimental results. IEEE Transactions on Vehicular Technology, 61(6), 2452–2457.CrossRefGoogle Scholar
  47. Rezvani, A., Khalili, A., Mazareie, A., & Gandomkar, M. (2016). Modeling, control, and simulation of grid connected intelligent hybrid battery/photovoltaic system using new hybrid fuzzy-neural method. ISA Transactions, 63, 448–460.CrossRefGoogle Scholar
  48. Ruan, J., Zhang, C., Li, Y., Li, P., Yang, Z., Chen, X., et al. (2017). Improving the efficiency of dissolved oxygen control using an on-line control system based on a genetic algorithm evolving FWNN software sensor. Journal of Environmental Management, 187, 550–559.CrossRefGoogle Scholar
  49. Sadaei, H. J., Guimarães, F. G., José da Silva, C., Lee, M. H., & Eslami, T. (2017). Short-term load forecasting method based on fuzzy time series, seasonality and long memory process. International Journal of Approximate Reasoning, 83, 196–217.MathSciNetCrossRefzbMATHGoogle Scholar
  50. Son, H., & Kim, C. (2017). Short-term forecasting of electricity demand for the residential sector using weather and social variables. Resources, Conservation and Recycling, 123, 200–207.CrossRefGoogle Scholar
  51. Sukumar, S., Marsadek, M., Ramasamy, A., Mokhlis, H., & Mekhilef, S. (2017). A fuzzy-based PI controller for power management of a grid-connected PV-SOFC hybrid system. Energies, 10(11) (art. no. 1720).Google Scholar
  52. Tabatabaei, S. M., & Vahidi, B. (2011). Bacterial foraging solution based fuzzy logic decision for optimal capacitor allocation in radial distribution system. Electric Power Systems Research, 81(4), 1045–1050.CrossRefGoogle Scholar
  53. Venayagamoorthy, G. K., Grant, L. L., & Doctor, S. (2009). Collective robotic search using hybrid techniques: Fuzzy logic and swarm intelligence inspired by nature. Engineering Applications of Artificial Intelligence, 22(3), 431–441.CrossRefGoogle Scholar
  54. Wang, L., Zhou, G., Xu, Y., & Liu, M. (2013). A hybrid artificial bee colony algorithm for the fuzzy flexible job-shop scheduling problem. International Journal of Production Research, 51(12), 3593–3608.Google Scholar
  55. Wang, W., Li, M., Hassanien, R. H. E., Ji, M. E., & Feng, Z. (2017a). Optimization of thermal performance of the parabolic trough solar collector systems based on GA-BP neural network model. International Journal of Green Energy, 14(10), 819–830.CrossRefGoogle Scholar
  56. Wang, W., Li, M., Hassanien, R. H. E., Ji, M. E., & Feng, Z. (2017b). Optimization of thermal performance of the parabolic trough solar collector systems based on GA-BP neural network model. International Journal of Green Energy, 14(10), 819–830.CrossRefGoogle Scholar
  57. Wang, X. (2017). Research on double energy fuzzy controller of electric vehicle based on particle swarm optimization of multimedia big data. International Journal of Mobile Computing and Multimedia Communications, 8(3), 32–43.CrossRefGoogle Scholar
  58. Wu, X., Cao, B., Wen, J., & Bian, Y. (2008). Particle swarm optimization for plug-in hybrid electric vehicle control strategy parameter. 2008 IEEE Vehicle Power and Propulsion Conference, VPPC 2008.Google Scholar
  59. Xu, C., Feng, X., Zhang, J., Li, X., & Cao, Y. (2017). The design of a fuzzy control rule library based on improved bacterial foraging optimization. Chongqing Daxue Xuebao/Journal of Chongqing University, 40(7), 63–71.Google Scholar
  60. Xu, S., & Xuesong, X. (2014). Fuzzy identification base on cat swarm optimization algorithm. The 26th Chinese Control and Decision Conference (CCDC 2014), 31 May–2 June 2014, Changsha, China.Google Scholar
  61. Yazdani, H., Kwasnicka, H., & Ortiz-Arroyo, D. (2011). Multiobjective particle swarm optimization using fuzzy logic. In P. Jędrzejowicz, N. T. Nguyen, & K. Hoang (Eds.), Computational Collective Intelligence: Technologies and Applications, ICCCI 2011, Third International Conference on Computational Collective Intelligence, Gdynia, Poland, September 21–23, Proceedings, Part II, pp. 224–233.Google Scholar
  62. Yin, A., Zhao, H., & Zhang, B. (2014). Optimisation of fuzzy control strategy for hybrid electric bus based on genetic-ant colony algorithm. Australian Journal of Electrical and Electronics Engineering, 11(3), 339–346.CrossRefGoogle Scholar
  63. Yu, H., Tarsitano, D., Hu, X., & Cheli, F. (2016). Real time energy management strategy for a fast charging electric urban bus powered by hybrid energy storage system. Energy, 112, 322–331.CrossRefGoogle Scholar
  64. Zhou, M., Lu, D., Li, W., & Xu, H. (2013). Optimized fuzzy logic control strategy for parallel hybrid electric vehicle based on genetic algorithm. Applied Mechanics and Materials, 274, 345–349.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Cengiz Kahraman
    • 1
  • Sezi Çevik Onar
    • 1
  • Basar Oztaysi
    • 1
  1. 1.Department of Industrial EngineeringIstanbul Technical UniversityBesiktas, IstanbulTurkey

Personalised recommendations