Advertisement

Sustainability Performance Evaluation of Energy Generation Projects

  • Yağmur Karabulut
  • Gülçin Büyüközkan
Chapter
Part of the Studies in Systems, Decision and Control book series (SSDC, volume 149)

Abstract

Affordable and reliable energy is not only central to prosperity, but also to poverty reduction, local development, environmental integrity, quality of life, growth, and progress. Given the importance and wide scale of energy generation all around the world, its ever growing economic, social and environmental aspects need to be taken into better consideration. The sustainability performance of energy operations shall be assessed on a project basis, as energy generation projects may significantly vary, depending on the needs and circumstances. This chapter introduces a novel approach for evaluating energy projects from a sustainability point of view and estimates their sustainability performance as a decision-making support tool. Decision environments can sometimes be complicated for an individual decision maker (DM) to consider every aspect of the problem. Group decision making (GDM) can be advantageous to reduce the impact of biased and personal opinions on the decision process. Moreover, DMs’ judgments are mostly far from being completely certain, making it more difficult to put their ratings into numerical forms. In such circumstances, the fuzzy set theory can be applied to better represent DMs’ preferences. This chapter applies GDM together with the fuzzy set theory to find the importance of the selected evaluation criteria. Then, GDM and the fuzzy set theory are combined with VIKOR (Vlse Kriterijumska Optimizacija Kompromisno Resenje) technique to rank the energy project alternatives. This approach is particularly useful for its strength in dealing with actual energy projects so that it can support both researchers and business managers to compare the sustainability performance of planned or realized power plants in a balanced manner. The usability of the proposed approach is shown in a case study from Turkey, where different energy projects are evaluated for their overall sustainability performance.

Notes

Acknowledgements

The authors would like to express their sincere gratitude to the experts for their invaluable support in the evaluation. This research was supported by Galatasaray University Research Fund (Projects number: 17.402.004 and 17.402.009).

References

  1. Abdullah, L., & Najib, L. (2016). Sustainable energy planning decision using the intuitionistic fuzzy analytic hierarchy process: Choosing energy technology in Malaysia. International Journal of Sustainable Energy, 35, 360–377.  https://doi.org/10.1080/14786451.2014.907292.CrossRefGoogle Scholar
  2. Atmaca, E., & Basar, H. B. (2012). Evaluation of power plants in Turkey using Analytic Network Process (ANP). Energy, 44, 555–563.  https://doi.org/10.1016/j.energy.2012.05.046.CrossRefGoogle Scholar
  3. Bahadır, B., & Büyüközkan, G. (2016). Robot selection for warehouses. In Proceeding of LM SCM 2016 Conference, p. 341.Google Scholar
  4. Balin, A., & Baraçli, H. (2017). A fuzzy multi-criteria decision making methodology based upon the interval Type-2 fuzzy sets for evaluating renewable energy alternatives in Turkey. Technological and Economic Development of Economy, 23, 742–763.  https://doi.org/10.3846/20294913.2015.1056276.CrossRefGoogle Scholar
  5. Begić, F., & Afgan, N. H. (2007). Sustainability assessment tool for the decision making in selection of energy system—Bosnian case. Energy, 32, 1979–1985.  https://doi.org/10.1016/j.energy.2007.02.006.CrossRefGoogle Scholar
  6. Burton, J., & Hubacek, K. (2007). Is small beautiful? A multicriteria assessment of small-scale energy technology applications in local governments. Energy Policy, 35, 6402–6412.  https://doi.org/10.1016/j.enpol.2007.08.002.CrossRefGoogle Scholar
  7. Büyüközkan, G., & Güleryüz, S. (2014). A new GDM based AHP framework with linguistic interval fuzzy preference relations for renewable energy planning. Journal of Intelligent & Fuzzy Systems, 27, 3181–3195.MathSciNetGoogle Scholar
  8. Büyüközkan, G., & Güleryüz, S. (2016). An integrated DEMATEL-ANP approach for renewable energy resources selection in Turkey. International Journal of Production Economics, 182, 435–448.  https://doi.org/10.1016/j.ijpe.2016.09.015.CrossRefGoogle Scholar
  9. Büyüközkan, G., & Güleryüz, S. (2017). Evaluation of renewable energy resources in Turkey using an integrated MCDM approach with linguistic interval fuzzy preference relations. Energy, 123, 149–163.  https://doi.org/10.1016/j.energy.2017.01.137.CrossRefGoogle Scholar
  10. Büyüközkan, G., & Karabulut, Y. (2017). Energy project performance evaluation with sustainability perspective. Energy, 119, 549–560.  https://doi.org/10.1016/j.energy.2016.12.087.CrossRefGoogle Scholar
  11. Büyüközkan, G., & Ruan, D. (2008). Evaluation of software development projects using a fuzzy multi-criteria decision approach. Math Comput Simul, 77, 464–475.  https://doi.org/10.1016/j.matcom.2007.11.015.MathSciNetCrossRefzbMATHGoogle Scholar
  12. Cavallaro, F., & Ciraolo, L. (2005). A multicriteria approach to evaluate wind energy plants on an Italian island. Energy Policy, 33, 235–244.  https://doi.org/10.1016/S0301-4215(03)00228-3.CrossRefGoogle Scholar
  13. Chang, T.-H. (2014). Fuzzy VIKOR method: A case study of the hospital service evaluation in Taiwan. Information Sciences, 271, 196–212.  https://doi.org/10.1016/j.ins.2014.02.118.CrossRefGoogle Scholar
  14. Chatzimouratidis, A. I., & Pilavachi, P. A. (2007). Objective and subjective evaluation of power plants and their non-radioactive emissions using the analytic hierarchy process. Energy Policy, 35, 4027–4038.  https://doi.org/10.1016/j.enpol.2007.02.003.CrossRefGoogle Scholar
  15. Chatzimouratidis, A. I., & Pilavachi, P. A. (2008). Multicriteria evaluation of power plants impact on the living standard using the analytic hierarchy process. Energy Policy, 36, 1074–1089.  https://doi.org/10.1016/j.enpol.2007.11.028.CrossRefGoogle Scholar
  16. Chatzimouratidis, A. I., & Pilavachi, P. A. (2009). Technological, economic and sustainability evaluation of power plants using the Analytic Hierarchy Process. Energy Policy, 37, 778–787.  https://doi.org/10.1016/j.enpol.2008.10.009.CrossRefGoogle Scholar
  17. Chen, C.-T. (2000). Extensions of the TOPSIS for group decision-making under fuzzy environment. Fuzzy Sets and Systems, 114, 1–9.  https://doi.org/10.1016/S0165-0114(97)00377-1.CrossRefzbMATHGoogle Scholar
  18. Çolak, M., & Kaya, İ. (2017). Prioritization of renewable energy alternatives by using an integrated fuzzy MCDM model: A real case application for Turkey. Renewable and Sustainable Energy Reviews, 80, 840–853.  https://doi.org/10.1016/j.rser.2017.05.194.CrossRefGoogle Scholar
  19. Erdogan, M., & Kaya, I. (2015). An integrated multi-criteria decision-making methodology based on type-2 fuzzy sets for selection among energy alternatives in Turkey. Iran J Fuzzy Syst, 12, 1–25.MathSciNetGoogle Scholar
  20. Foroozesh, N., Gitinavard, H., Mousavi, S. M., & Vahdani, B. (2017). A hesitant fuzzy extension of VIKOR method for evaluation and selection problems under uncertainty. International Journal of Applied Management Science, 9, 95–113.  https://doi.org/10.1504/IJAMS.2017.084946.CrossRefGoogle Scholar
  21. Garg, R. K., Agrawal, V. P., & Gupta, V. K. (2007). Coding, evaluation and selection of thermal power plants—A MADM approach. International Journal of Electrical Power & Energy Systems, 29, 657–668.  https://doi.org/10.1016/j.ijepes.2006.08.002.CrossRefGoogle Scholar
  22. Grilli, G., Meo, I. D., Garegnani, G., & Paletto, A. (2017). A multi-criteria framework to assess the sustainability of renewable energy development in the Alps. Journal of Environmental Planning and Management, 60, 1276–1295.  https://doi.org/10.1080/09640568.2016.1216398.CrossRefGoogle Scholar
  23. Hsueh, S.-L., & Yan, M.-R. (2013). A multimethodology contractor assessment model for facilitating green innovation: The view of energy and environmental protection. Scientific World Journal, 2013, e624340.  https://doi.org/10.1155/2013/624340.Google Scholar
  24. IBRD, & World Bank. (2017). State of electricity (Access Report 2017).Google Scholar
  25. Ishizaka, A., Siraj, S., & Nemery, P. (2016). Which energy mix for the UK (United Kingdom)? An evolutive descriptive mapping with the integrated GAIA (graphical analysis for interactive aid)–AHP (analytic hierarchy process) visualization tool. Energy, 95, 602–611.  https://doi.org/10.1016/j.energy.2015.12.009.CrossRefGoogle Scholar
  26. Kabak, M., & Dağdeviren, M. (2014). Prioritization of renewable energy sources for Turkey by using a hybrid MCDM methodology. Energy Conversion and Management, 79, 25–33.  https://doi.org/10.1016/j.enconman.2013.11.036.CrossRefGoogle Scholar
  27. Kahraman, C., Kaya, İ., & Cebi, S. (2009). A comparative analysis for multiattribute selection among renewable energy alternatives using fuzzy axiomatic design and fuzzy analytic hierarchy process. Energy, 34, 1603–1616.  https://doi.org/10.1016/j.energy.2009.07.008.CrossRefGoogle Scholar
  28. Kaya, T., & Kahraman, C. (2010). Multicriteria renewable energy planning using an integrated fuzzy VIKOR & AHP methodology: The case of Istanbul. Energy, 35, 2517–2527.  https://doi.org/10.1016/j.energy.2010.02.051.CrossRefGoogle Scholar
  29. Kaya, T., & Kahraman, C. (2011). Multicriteria decision making in energy planning using a modified fuzzy TOPSIS methodology. Expert Systems with Applications, 38, 6577–6585.  https://doi.org/10.1016/j.eswa.2010.11.081.CrossRefGoogle Scholar
  30. Köne, A. Ç., & Büke, T. (2007). An analytical network process (ANP) evaluation of alternative fuels for electricity generation in Turkey. Energy Policy, 35, 5220–5228.  https://doi.org/10.1016/j.enpol.2007.05.014.CrossRefGoogle Scholar
  31. Kowalski, K., Stagl, S., Madlener, R., & Omann, I. (2009). Sustainable energy futures: Methodological challenges in combining scenarios and participatory multi-criteria analysis. European Journal of Operational Research, 197, 1063–1074.  https://doi.org/10.1016/j.ejor.2007.12.049.CrossRefGoogle Scholar
  32. Krukanont, P., & Tezuka, T. (2007). Implications of capacity expansion under uncertainty and value of information: The near-term energy planning of Japan. Energy, 32, 1809–1824.  https://doi.org/10.1016/j.energy.2007.02.003.CrossRefGoogle Scholar
  33. Kuleli Pak, B., Albayrak, Y. E., & Erensal, Y. C. (2017). Evaluation of sources for the sustainability of energy supply in Turkey. Environment Progress & Sustainable Energy, 36, 627–637.  https://doi.org/10.1002/ep.12507.CrossRefGoogle Scholar
  34. Lee, A. H. I., Chen, H. H., & Kang, H.-Y. (2009). Multi-criteria decision making on strategic selection of wind farms. Renewable Energy, 34, 120–126.  https://doi.org/10.1016/j.renene.2008.04.013.CrossRefGoogle Scholar
  35. Liu, H.-C., You, J.-X., Chen, Y.-Z., & Fan, X.-J. (2014). Site selection in municipal solid waste management with extended VIKOR method under fuzzy environment. Environmental Earth Sciences, 72, 4179–4189.  https://doi.org/10.1007/s12665-014-3314-6.CrossRefGoogle Scholar
  36. Mandal, S., Singh, K., Behera, R. K., et al. (2015). Human error identification and risk prioritization in overhead crane operations using HTA, SHERPA and fuzzy VIKOR method. Expert Systems with Applications, 42, 7195–7206.  https://doi.org/10.1016/j.eswa.2015.05.033.CrossRefGoogle Scholar
  37. Nixon, J. D., Dey, P. K., Davies, P. A., et al. (2014). Supply chain optimisation of pyrolysis plant deployment using goal programming. Energy, 68, 262–271.  https://doi.org/10.1016/j.energy.2014.02.058.CrossRefGoogle Scholar
  38. Nixon, J. D., Dey, P. K., Ghosh, S. K., & Davies, P. A. (2013). Evaluation of options for energy recovery from municipal solid waste in India using the hierarchical analytical network process. Energy, 59, 215–223.  https://doi.org/10.1016/j.energy.2013.06.052.CrossRefGoogle Scholar
  39. Onar, S. C., Oztaysi, B., Otay, İ., & Kahraman, C. (2015). Multi-expert wind energy technology selection using interval-valued intuitionistic fuzzy sets. Energy, 90, 274–285.  https://doi.org/10.1016/j.energy.2015.06.086.
  40. Önüt, S., Tuzkaya, U. R., & Saadet, N. (2008). Multiple criteria evaluation of current energy resources for Turkish manufacturing industry. Energy Conversion and Management, 49, 1480–1492.  https://doi.org/10.1016/j.enconman.2007.12.026.CrossRefGoogle Scholar
  41. Opricovic, S. (1998). Multi-criteria optimization of civil engineering systems. Faculty of Civil Engineering, Belgrade. (Table II Perform Matrix).Google Scholar
  42. Opricovic, S., & Tzeng, G.-H. (2004). Compromise solution by MCDM methods: A comparative analysis of VIKOR and TOPSIS. European Journal of Operational Research, 156, 445–455.  https://doi.org/10.1016/S0377-2217(03)00020-1.CrossRefzbMATHGoogle Scholar
  43. Opricovic, S., & Tzeng, G.-H. (2003). Defuzzification within a multicriteria decision model. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 11, 635–652.  https://doi.org/10.1142/S0218488503002387.MathSciNetCrossRefzbMATHGoogle Scholar
  44. Özkale, C., Celik, C., Turkmen, A. C., & Cakmaz, E. S. (2017). Decision analysis application intended for selection of a power plant running on renewable energy sources. Renewable and Sustainable Energy Reviews, 70, 1011–1021.  https://doi.org/10.1016/j.rser.2016.12.006.CrossRefGoogle Scholar
  45. Pilavachi, P. A., Stephanidis, S. D., Pappas, V. A., & Afgan, N. H. (2009). Multi-criteria evaluation of hydrogen and natural gas fuelled power plant technologies. Applied Thermal Engineering, 29, 2228–2234.  https://doi.org/10.1016/j.applthermaleng.2008.11.014.CrossRefGoogle Scholar
  46. Polatidis, H., & Haralambopoulos, D. (2004). Local renewable energy planning: A participatory multi-criteria approach. Energy Sources, 26, 1253–1264.  https://doi.org/10.1080/00908310490441584.CrossRefGoogle Scholar
  47. Rostamzadeh, R., Govindan, K., Esmaeili, A., & Sabaghi, M. (2015). Application of fuzzy VIKOR for evaluation of green supply chain management practices. Ecol Indic, 49, 188–203.  https://doi.org/10.1016/j.ecolind.2014.09.045.CrossRefGoogle Scholar
  48. Saaty, T. L. (2008). Decision making with the analytic hierarchy process. International Journal of Services Sciences, 1(1), 83–98. https://doi.org/10.1504/IJSSci.2008.01759.
  49. San Cristóbal, J. R. (2011). Multi-criteria decision-making in the selection of a renewable energy project in Spain: The Vikor method. Renew Energy, 36, 498–502.  https://doi.org/10.1016/j.renene.2010.07.031.CrossRefGoogle Scholar
  50. Şengül, Ü., Eren, M., Eslamian Shiraz, S., et al. (2015). Fuzzy TOPSIS method for ranking renewable energy supply systems in Turkey. Renewable Energy, 75, 617–625.  https://doi.org/10.1016/j.renene.2014.10.045.CrossRefGoogle Scholar
  51. Sofiyabadi, J., Kolahi, B., & Valmohammadi, C. (2016). Key performance indicators measurement in service business: A fuzzy VIKOR approach. Total Quality Management & Business Excellence, 27, 1028–1042.  https://doi.org/10.1080/14783363.2015.1059272.CrossRefGoogle Scholar
  52. Streimikiene, D., Balezentis, T., Krisciukaitienė, I., & Balezentis, A. (2012). Prioritizing sustainable electricity production technologies: MCDM approach. Renewable and Sustainable Energy Reviews, 16, 3302–3311.  https://doi.org/10.1016/j.rser.2012.02.067.CrossRefGoogle Scholar
  53. Tsoutsos, T., Drandaki, M., Frantzeskaki, N., et al. (2009). Sustainable energy planning by using multi-criteria analysis application in the island of Crete. Energy Policy, 37, 1587–1600.  https://doi.org/10.1016/j.enpol.2008.12.011.CrossRefGoogle Scholar
  54. United Nations. (2015). Sustainable development goals. In U. N. sustainable development http://www.un.org/sustainabledevelopment/sustainable-development-goals/. Accessed July 21, 2017.
  55. Vinodh, S., Varadharajan, A. R., & Subramanian, A. (2013). Application of fuzzy VIKOR for concept selection in an agile environment. International Journal of Advanced Manufacturing Technology, 65, 825–832.  https://doi.org/10.1007/s00170-012-4220-2.CrossRefGoogle Scholar
  56. Wang, J.-J., Jing, Y.-Y., Zhang, C.-F., & Zhao, J.-H. (2009). Review on multi-criteria decision analysis aid in sustainable energy decision-making. Renewable and Sustainable Energy Reviews, 13, 2263–2278.  https://doi.org/10.1016/j.rser.2009.06.021.CrossRefGoogle Scholar
  57. Wang, Y. (2017). A fuzzy VIKOR approach for renewable energy resources selection in China. Revista de la Facultad de Ingeniería, 31(10).Google Scholar
  58. World Bank. (2017). Energy overview. http://www.worldbank.org/en/topic/energy/overview#1. Accessed April 24, 2017.
  59. Wu, Z., Ahmad, J., & Xu, J. (2016). A group decision making framework based on fuzzy VIKOR approach for machine tool selection with linguistic information. Applied Soft Computing, 42, 314–324.  https://doi.org/10.1016/j.asoc.2016.02.007.CrossRefGoogle Scholar
  60. Yager, R. R. (1988). On ordered weighted averaging aggregation operators in multicriteria decisionmaking. IEEE Trans Syst Man Cybern, 18, 183–190.  https://doi.org/10.1109/21.87068.MathSciNetCrossRefzbMATHGoogle Scholar
  61. Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8, 338–353.MathSciNetCrossRefzbMATHGoogle Scholar
  62. Zhang, L., Zhou, P., Newton, S., et al. (2015). Evaluating clean energy alternatives for Jiangsu, China: An improved multi-criteria decision making method. Energy 90: Part, 1, 953–964.  https://doi.org/10.1016/j.energy.2015.07.124.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Mavi ConsultantsUskudar, IstanbulTurkey
  2. 2.Department of Industrial EngineeringGalatasaray UniversityOrtaköy, IstanbulTurkey

Personalised recommendations