Fuzzy Sets Based Performance Evaluation of Alternative Wind Energy Systems

  • Başar Öztayşi
  • Sezi Çevik Onar
  • Cengiz Kahraman
  • Ali Karaşan
Part of the Studies in Systems, Decision and Control book series (SSDC, volume 149)


Evaluation of energy systems requires linguistic terms under vague and imprecise environment. The required design parameters of energy systems and the corresponding system values of those parameters should be compared to reveal that how much the alternative energy system meets the required design parameters. One of the best methods for this comparison is multi-attribute axiomatic design method. In this chapter, we present an intuitionistic fuzzy information axiom methodology in order to select the best wind energy alternative. Information axiom is used in this chapter, which is one of the two axioms of axiomatic design (AD) methodology. Triangular intuitionistic fuzzy sets are also used in the methodology. Six wind energy alternatives are evaluated based on eight attributes. A sensitivity analysis is applied to examine the robustness of the given decisions.


  1. Abdulrahman, M., & Wood, D. (2017). Investigating the power-COE trade-off for wind farm layout optimization considering commercial turbine selection and hub height variation. Renewable Energy, 102, 267–278.CrossRefGoogle Scholar
  2. Atanassov, K.T. (1986). Intuitionistic fuzzy sets. Fuzzy Sets and Systems, 20(1), 87–96.Google Scholar
  3. Atanassov, K.T. (1999). Intuitionistic fuzzy sets. Theory and Applications, Studies in Fuzziness and Soft Computing (Vol. 35). Physica-Verlag Heidelberg, Berlin.Google Scholar
  4. Bagočius, V., Zavadskas, E. K., & Turskis, Z. (2014). Multi-person selection of the best wind turbine based on the multi-criteria integrated additive-multiplicative utility function. Journal of Civil Engineering and Management, 20(4), 590–599.CrossRefGoogle Scholar
  5. Bansal, R. C., Bhatti, T. S., & Kothari, D. P. (2002). On some of the design aspects of wind energy conversion systems. Energy Conversion and Management, 43(16), 2175–2187.CrossRefGoogle Scholar
  6. Bassyouni, M., & Gutub, S. A. (2013). Materials selection strategy and surface treatment of polymer composites for wind turbine blades fabricatio. Polymers and Polymer Composites, 21(7), 463.Google Scholar
  7. Behn, R. D. (2003). Why measure performance? Different purposes require different measures.Google Scholar
  8. Bora, M., Neog, T. J., & Kumar Sut, D. (2012). On generalized intuitionistic fuzzy soft set. Journal of Mathematical and Computational Science, 2(4), 1030–1051.Google Scholar
  9. Cebi, S., & Kahraman, C. (2013). Using multi attribute choquet integral in site selection of wind energy plants: The case of Turkey. Journal of Multiple-Valued Logic & Soft Computing, 20, 423–443.Google Scholar
  10. Cevik, Onar S., Oztaysi, B., Otay, I., & Kahraman, C. (2015). Multi-expert wind energy technology selection using interval-valued intuitionistic fuzzy sets. Energy, 90(Part 1), 274–285.Google Scholar
  11. Chang, K.-H., Cheng, C.-H., Chang, Y.-C. (2008). Reliability assessment of an aircraft propulsion system using IFS and OWA tree. Engineering Optimization, 40(10), 907–921.Google Scholar
  12. Chowdhury, S., Zhang, J., Messac, A., & Castillo, L. (2013). Optimizing the arrangement and the selection of turbines for wind farms subject to varying wind conditions. Renewable Energy, 52, 273–282.CrossRefGoogle Scholar
  13. Cross, K. F., & Lynch, R. L. (1989). The “SMART” way to define and sustain success. National Productivity Review, 8, 23–33. Scholar
  14. Dong, Y., Wang, J., Jiang, H., & Shi, X. (2013). Intelligent optimized wind resource assessment and wind turbines selection in Huitengxile of Inner Mongolia, China. Applied Energy, 109, 239–253.CrossRefGoogle Scholar
  15. Du, M., Yi, J., Mazidi, P., Cheng, L. & Guo, J. (2017). A parameter selection method for wind turbine health management through SCADA data. Energies, 10(2), 253.Google Scholar
  16. Fitzgerald, L., Johnston, R., Silvestro, T. J., & Voss, C. (1991). Performance measurement in service business. London: The Chartered Institute of Management Accountants.Google Scholar
  17. Folan, P., Browne, J., & Jagdev, H. (2007). Performance: Its meaning and content for today’s business research. Computers in Industry, 58, 605–620.CrossRefGoogle Scholar
  18. Fotuhi-Firuzabad, M., & Dobakhshari, A. S. (2009). Reliability-based selection of wind turbines for large-scale wind Farms. World Academy of Science, Engineering and Technology, 49, 734–740.Google Scholar
  19. Gencturk, B., Attar, A., & Tort, C. (2015). Selection of an optimal lattice wind turbine tower for a seismic region based on the Cost of Energy. KSCE Journal of Civil Engineering, 19(7), 2179–2190.CrossRefGoogle Scholar
  20. Herbert, G. J., Iniyan, S., Sreevalsan, E., & Rajapandian, S. (2007). A review of wind energy technologies. Renewable and Sustainable Energy Reviews, 11(6), 1117–1145.CrossRefGoogle Scholar
  21. Kahraman, C., & Çebi, S. (2009). A new multi-attribute decision making method: Hierarchical fuzzy axiomatic design. Expert Systems with Applications, 36(3, Part 1), 4848–4861.CrossRefGoogle Scholar
  22. Kahraman, C., Cebi, S., Cevik Onar, S., & Oztaysi, B. (2018). A novel trapezoidal intuitionistic fuzzy information axiom approach: An application to multicriteria landfill site selection. Engineering Applications of Artificial Intelligence, 67, 157–172.CrossRefGoogle Scholar
  23. Kahraman, C., Cebi, S., & Kaya, I. (2010). Selection among renewable energy alternatives using fuzzy axiomatic design: The case of Turkey. Journal of Universal Computer Science, 16(1), 82–102.Google Scholar
  24. Kahraman, C., Cevik Onar, S., & Oztaysi, B. (2016). A comparison of wind energy investment alternatives using interval-valued intuitionistic fuzzy benefit/cost analysis. Sustainability, 8(2), 118–136.CrossRefGoogle Scholar
  25. Kahraman, C., Onar, S. C., Cebi, S., & Oztaysi, B. (2017). Extension of information axiom from ordinary to intuitionistic fuzzy sets: An application to search algorithm selection. Computers & Industrial Engineering, 105, 348–361.CrossRefGoogle Scholar
  26. Kaplan, R. S., & Norton, D. P. (1992). The balanced scorecard-measures that drive performance. Harvard Business Review, 70, 71–79. PMID:10119714.Google Scholar
  27. Kaya, T., & Kahraman, C. (2010). Multicriteria renewable energy planning using an integrated fuzzy VIKOR & AHP methodology: The case of Istanbul. Energy, 35(6), 2517–2527.CrossRefGoogle Scholar
  28. Keegan, D. P., Eiler, R. G., & Jones, C. (1989). Are your performance measures obsolete? Management Accounting, 12, 45–50.Google Scholar
  29. Kulak, O., & Kahraman, C. (2005a). Fuzzy multi-attribute selection among transportation companies using axiomatic design and analytic hierarchy process. Information Sciences, 170, 191–210.CrossRefzbMATHGoogle Scholar
  30. Kulak, O., & Kahraman, C. (2005b). Multi-attribute comparison of advanced manufacturing systems using fuzzy vs. crisp axiomatic design approach. International Journal of Production Economics, 95, 415–424.CrossRefGoogle Scholar
  31. Lebas, M. (1995). Performance measurement and performance management. International Journal of Production Economics, 41, 23–25.CrossRefGoogle Scholar
  32. Lee, A. H., Chen, H. H., & Kang, H. Y. (2009). Multi-criteria decision making on strategic selection of wind farms. Renewable Energy, 34(1), 120–126.CrossRefGoogle Scholar
  33. Maity, S. R., & Chakraborty, S. (2012). Turbine blade material selection using fuzzy analytic network process. International Journal of Materials and Structural Integrity, 6(2–4), 169189.Google Scholar
  34. Meyer, M. W. (2002). Rethinking performance measurement: Beyond the balanced scorecard. New York: Cambridge University Press.Google Scholar
  35. Montoya, F. G., Manzano-Agugliaro, F., López-Márquez, S., Hernández-Escobedo, Q., & Gil, C. (2014). Wind turbine selection for wind farm layout using multi-objective evolutionary algorithms. Expert Systems with Applications, 41(15), 6585–6595.CrossRefGoogle Scholar
  36. Mousavi, M., Gitinavard, H., & Mousavi, S. M. (2017). A soft computing based-modified ELECTRE model for renewable energy policy selection with unknown information. Renewable and Sustainable Energy Reviews, 68, 774–787.CrossRefGoogle Scholar
  37. Neely, A., Adams, C., & Kennerley, M. (2002). The performance prism: The scorecard for measuring and managing business success. London: Prentice Hall Financial Times.Google Scholar
  38. Onar, S. C., Oztaysi, B., Otay, İ., & Kahraman, C. (2015). Multi-expert wind energy technology selection using interval-valued intuitionistic fuzzy sets. Energy, 90, 274–285.
  39. Petković, D., & Shamshirband, S. (2015). Soft methodology selection of wind turbine parameters to large affect wind energy conversion. International Journal of Electrical Power & Energy Systems, 69, 98–103.CrossRefGoogle Scholar
  40. Rehman, S., & Khan, S. A. (2016). Fuzzy logic based multi-criteria wind turbine selection strategy—A case study of Qassim, Saudi Arabia. Energies, 9(11), 872.CrossRefGoogle Scholar
  41. Rehman, S., & Khan, S. A. (2017). Multi-criteria wind turbine selection using weighted sum approach. International Journal of Advanced Computer Science and Applications, 8(6), 128–132.CrossRefGoogle Scholar
  42. Ritter, M., & Deckert, L. (2017). Site assessment, turbine selection, and local feed-in tariffs through the wind energy index. Applied Energy, 185, 1087–1099.CrossRefGoogle Scholar
  43. Sarja, J., & Halonen, V. (2013). Wind turbine selection criteria: A customer perspective. Journal of Energy and Power Engineering, 7(9), 1795.Google Scholar
  44. Suh, N. P. (1990). The principles of design. NY: Oxford University Press Inc.Google Scholar
  45. Suh, N. P. (2005). Complexity: Theory and applications. NY: Oxford University Press.Google Scholar
  46. Sun, W., & Ren, Q. (2014). BP neural network Application in wind turbine type selection based on particle swarm optimization. Journal of Information & Computational Science, 11(7), 2415–2423.CrossRefGoogle Scholar
  47. Sun, W., & Xu, Z. (2017). Wind turbine generator selection and comprehensive evaluation based on BPNN optimized by PSO. International Journal of Applied Decision Sciences, 10(4), 364–381.CrossRefGoogle Scholar
  48. Tegou, L. I., Polatidis, H., & Haralambopoulos, D. A. (2009). Wind turbines site selection on an isolated island. WIT Transactions on Ecology and the Environment, 127, 313–324.CrossRefGoogle Scholar
  49. Theotokoglou, E. E., & Balokas, G. A. (2015). Computational analysis and material selection in cross-section of a composite wind turbine blade. Journal of Reinforced Plastics and Composites, 34(2), 101–115.CrossRefGoogle Scholar
  50. Van Buren, K. L., Atamturktur, S., & Hemez, F. M. (2014). Model selection through robustness and fidelity criteria: modeling the dynamics of the CX-100 wind turbine blade. Mechanical Systems and Signal Processing, 43(1), 246–259.CrossRefGoogle Scholar
  51. Vasileiou, M., Loukogeorgaki, E., & Vagiona, D. G. (2017). GIS-based multi-criteria decision analysis for site selection of hybrid offshore wind and wave energy systems in Greece. Renewable and Sustainable Energy Reviews, 73, 745–757.CrossRefGoogle Scholar
  52. Wang, Y. (2017). A fuzzy VIKOR approach for renewable energy resources selection in China. Revista de la Facultad de Ingeniería, 31(10), 62–77.Google Scholar
  53. Wholey, J. (1996). Formative and summative evaluation: Related issues in performance measurement. Evaluation Practice, 17, 145–149.CrossRefGoogle Scholar
  54. Zhang, X., & Liu, P. D. (2010). Method for aggregating triangular intuitionistic fuzzy information and its application to decision making. Technologic and Economic Development of Economy, 16, 280–290.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Başar Öztayşi
    • 1
  • Sezi Çevik Onar
    • 1
  • Cengiz Kahraman
    • 1
  • Ali Karaşan
    • 2
  1. 1.Istanbul Technical UniversityMacka, IstanbulTurkey
  2. 2.Yildiz Technical UniversityEsenler, IstanbulTurkey

Personalised recommendations