Fuzzy MCDM Methods in Sustainable and Renewable Energy Alternative Selection: Fuzzy VIKOR and Fuzzy TODIM

  • Zeynep Kezban Turgut
  • Abdullah Çağrı Tolga
Part of the Studies in Systems, Decision and Control book series (SSDC, volume 149)


In recent years, there has been a remarkable trend toward sustainable and renewable energy sources due to environmental problems and depletion of fossil energy sources. Authorities encourage energy investors to tend this field and consequently many investors develop an energy planning for next decades based on renewable energy sources. At this stage, it is a crucial step to choose energy type and develop a strategic plan based on it. In this study, we aimed to find out the best performing sustainable and/or renewable energy alternative and thus guide decision makers on energy investments. We evaluated four energy power plant types, which are solar, wind, hydroelectric and landfilled gas (LFG). Multi-criteria decision making (MCDM) methods are very appropriate for the evaluation of the renewable energy alternatives, with many factors to consider. We conducted a real life case study with two different MCDM methods; VIKOR and TODIM, and compared their results. In order to cope with vagueness and uncertainty in this evaluation process, we integrated fuzzy sets into both methods. Finally, we presented a sensitivity analysis to see how robust decisions we obtained.


  1. Abdel-Kader, M.G., & Dugdale, D. (2001). Evaluating investments in advanced manufacturing technology: a fuzzy set theory approach, The British Accounting Review, 33, 455–489.Google Scholar
  2. Abdullah, L., & Najib, L. (2014). Sustainable energy planning decision using the intuitionistic fuzzy analytic hierarchy process: Choosing energy technology in Malaysia. International Journal of Sustainable Energy, 35(4), 360–377.CrossRefGoogle Scholar
  3. Afgan, N., & Carvalho, M. (2001). Multi-criteria assessment of new and renewable energy power plants. Energy, 27, 739–755.CrossRefGoogle Scholar
  4. Al Garni, H., Kassem, A., Awasthi, A., Komljenovic, D., & Al-Haddad, K. (2016). A MCDM approach for evaluating renewable power generation sources in Saudi Arabia. Sustainable Energy Technologies and Assessments, 16, 137–150.CrossRefGoogle Scholar
  5. Anadolu ajansı. (2017). Çöpten 400 bin konutun elektriği çıkıyor. URL:
  6. Asemi, A., Baba, M., Asemi, A., Rukaini, B. H. A., & Idris, N. (2014). Fuzzy multi criteria decision making applications: A review study.Google Scholar
  7. Beccali, M., Cellura, M., & Mistretta, M. (2003). Decision-making in energy planning. Application of the electre method at regional level for the diffusion of renewable energy technology. Renewable Energy, 28(13), 2063–2087.CrossRefGoogle Scholar
  8. Büyüközkan, G., & Güleryüz, S. (2017). Evaluation of renewable energy resources in Turkey using an integrated MCDM approach with linguistic interval fuzzy preference relations. Energy, 123, 149–163.CrossRefGoogle Scholar
  9. Cavallora, F., & Ciarolo, L. (2005). A multicritera approach to evaluate wind energy plants on an Italian island. Energy Policy, 33, 235–244.CrossRefGoogle Scholar
  10. Chang, T. H. (2014). Fuzzy VIKOR method: A case study of the hospital service evaluation in Taiwan. Information Sciences, 271, 2–196.CrossRefGoogle Scholar
  11. Chen, S. J., Hwang, C. L., & Hwang, F. P. (1992). Fuzzy multiple attribute decision making methods and applications (pp. 88–89). Berlin: Springer.CrossRefzbMATHGoogle Scholar
  12. Dermencioğlu, M. (2017). Yerli güneş paneli hücresiyle maliyeti düşürecek. URL:
  13. DSİ. (2013). Türkiye’nin Hidrolik Potansiyeli, A., Baba, M., Asemi, A., Rukaini, B. H. A., Idris, N. Fuzzy Multi Criteria Decision Making Applications: A Review Study (2014)
  14. Gao, S., Zhang, Z., & Cao, C. (2009). Multiplication operation on fuzzy numbers. Journal Of Software, 4(4), 331–338.CrossRefGoogle Scholar
  15. GAP Bölge Kalkınma İdaresi Başkanlığı. GAP Nedir? URL:
  16. Global Wind Energy Council. (2017a). URL:
  17. Global Wind Energy Council. (2017b). URL:
  18. Gomes, L. F. A. M. & Lima, M. M. P. P. (1992). TODIM: basics and application to multicriteria ranking of projects with environmental impacts, Foundations of Computing and Decision Sciences, 16, 113–127.Google Scholar
  19. Hanine, M., Boutkhoum, O., Tikniouine, A., & Agouti, T. (2016). Comparison of fuzzy AHP and fuzzy TODIM methods for land fill location selection. SpringerPlus, 5, 1–30. Scholar
  20. Hwang, C. L., & Yoon, K. (1981). Multiple attribute decision making: methods and applications. New York: Springer.CrossRefzbMATHGoogle Scholar
  21. Iniyan, S., & Sumathy, K. (1998). An optimal renewable energy model for various end-uses. Energy, 25, 563–575.CrossRefGoogle Scholar
  22. Kahneman, D., & Tversky, A. (1979). Prospect theory: An Analysis of decision under risk. Econometrica, 47(2), 263–291.CrossRefzbMATHGoogle Scholar
  23. Kahraman, C., Çevik, S., & Öztaysi, B. (2015). Fuzzy Multicriteria Decision Making: A literature review. International Journal of Computational Intelligence Systems, 8(4), 637–666.
  24. Kaya, T., & Kahraman, C. (2010a). Multicriteria renewable energy planning using an integrated fuzzy VIKOR & AHP methodology: The case of Istanbul. Energy, 35(6), 2517.CrossRefGoogle Scholar
  25. Kaya, İ., & Kahraman, C. (2010b). A fuzzy multicriteria methodology for selection among energy alternatives. Expert Systems with Applications, 37(9), 6270–6281.CrossRefGoogle Scholar
  26. Kaya, T., & Kahraman, C. (2011). Multicriteria decision making in energy planning using a modified fuzzy TOPSIS methodology. Expert Systems with Applications, 38(6), 6577–6585.CrossRefGoogle Scholar
  27. Krohling, R. A., & Souza, T. T. M. (2012). Combining prospect theory and fuzzy numbers to multi-criteria decision making. Expert Systems with Applications, 39, 11487–11493.CrossRefGoogle Scholar
  28. Mardani, A., Zavadskas, E. K., Govindan, K., Senin, A. A., & Jusoh, A. (2016). VIKOR technique: A systematic review of the state of the art literature on methodologies and applications. Sustainability, 8, 1–38.CrossRefGoogle Scholar
  29. Mirasgedis, S., & Diakoulaki, D. (1997). Multicriteria analysis vs. externalities assessment for the comparative evaluation of electricity generation systems. European Journal of Operational Research, 102(2), 364–379.CrossRefzbMATHGoogle Scholar
  30. Myers, Joe. (2015). 5 expert predictions on how warm the world will get. World Economic Forum.
  31. Nobre, F. F., Trotta, L. T. F., & Gomes, L. F. A. M. (1999). Multi-criteria decision making—An approach to setting priorities in health care. Statistics in Medicine, 18(23), 3345–3354.CrossRefGoogle Scholar
  32. Opricovic, S. (2011). Fuzzy VIKOR with an application to water resources planning. Expert System with Applications, 38(10), 12983–12990.CrossRefGoogle Scholar
  33. Opricovic, S., & Tzeng, G. H. (2004). Compromise solution by MCDM methods: A comparative analysis of VIKOR and TOPSIS. European Journal of Operational Research, 156(2), 445–455.CrossRefzbMATHGoogle Scholar
  34. Opricovic, S., & Tzeng, G. H. (2007). Extended VIKOR method in comparison with outranking methods. European Journal of Operational Research, 178(2), 514–529.CrossRefzbMATHGoogle Scholar
  35. Qin, Q., Liang, F., Chen, Y. W., & Yu, G. F. (2017). A TODIM-based multi-criteria group decision making with triangular intuitionistic fuzzy numbers. Applied Soft Computing, 55, 93–107.CrossRefGoogle Scholar
  36. Rajaram, V., Siddiqui, F. Z., & Khan. M. E. (2012). From Landfill Gas to Energy Technologies and Challenges. URL:
  37. Rangel, L., Gomes, L., & Cardoso, F. (2011). An Application of the TODIM method to the evaluation of broadband internet plans. Pesquisa Operacional, 31(2), 235–249.Google Scholar
  38. Rüzgar Enerjisi Çalışmaları, Yenilenebilir Enerji Genel Müdürlüğü, URL:
  39. Renewable Energy Policy Network. (2016). Global status report. URL:
  40. San Cristobal, J. R. (2011). Multicriteria decision making in the selection of a renewable energy project in Spain: The Vikor method. Renewable Energy, 36(2), 498–502.CrossRefGoogle Scholar
  41. Sellak, H., Ouhbi, B., Frikh, B., & Palommares, I. (2017). Towards next-generation energy planning decision-making: An expert based framework for intelligent decision support. Renewable and Sustainable Energy Reviews, 80, 1544–1577. Scholar
  42. Sen, D. K., Datta, S., Patel, S. K., & Mahapatra, S. S. (2016). Fuzzy-TODIM for industrial robot selection. In: International Conference on Emerging Trends in Mechanical Engineering. pp. 1–8.Google Scholar
  43. Şengül, Ü., Eren, M., Shiraz, S. E., Gezder, V., & Şengül, A. B. (2015). Fuzzy TOPSIS method for ranking renewable energy supply systems in Turkey. Renewable Energy, 75, 617–625.CrossRefGoogle Scholar
  44. Shirgholami, Z., Zangeneh, A. N., & Bortolini, M. (2016). Decision system to support the practitioners in the wind farm design: A case study for Iran mainland. Sustainable Energy Technologies and Assessments, 16, 1–10.CrossRefGoogle Scholar
  45. Şimşek, C. (2014). Avrupa’nın en büyük çöp biyogaz tesisi İstanbul’da. URL:
  46. Şimşek, C. (2017). Türkiye potansiyelinin 25’te birini kullanıyor. URL:
  47. Streimikiene, D., Balezentis, T., Krisciukaitiene, I., & Balezentis, A. (2012). Prioritizing sustainable electricity production technologies: MCDM approach. Renewable and Sustainable Energy Reviews, 16(5), 3302–3311.CrossRefGoogle Scholar
  48. Streimikiene, D., Sliogeriene, J., & Turskis, J. (2016). Multi-criteria analysis of electricity generation technologies in Lithuania. Renewable Energy, 85, 148–156.CrossRefGoogle Scholar
  49. Tasri, A., & Susilawati, A. (2014). Selection among renewable energy alternatives based on a fuzzy analytic hierarchy process in Indonesia. Sustainable Energy Technologies and Assessments, 7, 34–44.CrossRefGoogle Scholar
  50. Tosun, Ö., & Akyüz, G. (2015). A fuzzy TODIM approach for the supplier selection problem. International Journal of Computational Intelligent Systems, 8(2), 317–329.CrossRefGoogle Scholar
  51. Tsai, K., & Chou, F. (2011). Developing a fuzzy multiattribute matching and negotiation mechanism for sealed—bid online reverse auctions. Journal of Theoretical and Applied Electronic Commerce Research, 6(3), 85–96.CrossRefGoogle Scholar
  52. Vagiona, D. G., & Karanikolas, N. M. (2012). A multicriteria approach to evaluate offshore wind farms siting In Greece. Global NEST Journal, 14(2), 235–243.Google Scholar
  53. Xiao, Z. and Zhi-ping, F. (2011). A method for linguistic multiple attribute decision making based on TODIM. International Conference on Management and Service Science. (pp. 1–4).Google Scholar
  54. Yazdani, M., & Graeml, F. (2014). VIKOR and its applications: A state of the art survey. International Journal of Strategic Decision Sciences, 5(2), 56–83.CrossRefGoogle Scholar
  55. YEGM. (2017). Güneş Enerjisi Potansiyeli Atlası. URL:
  56. YEGM. (2017). Türkiye’ nin hidroelektrik potansiyeli. URL:
  57. Yıldırım, G. (2015). Türkiye’nin ilk deniz üstü rüzgar gülü çiftliği projesine 2016 yılında başlanacak. URL:
  58. Yıldırım, L., Ata, G., Taşkın, O., & Lale, T. (2014). Sera Gazı Salınımları ve Türkiye’ de Yapılan Çalışmalar. Su Dünyası, Vol. 135 URL:
  59. Zadeh, L. A. (1965). Fuzzy Sets. Information and Control, 8, 338–353.Google Scholar
  60. Zerpa, J. C. R., & Yusta, J. M. (2015). Application of multicriteria decision methods for electric supply planning in rural and remote areas. Renewable and Sustainable Energy Reviews, 52, 557–571.CrossRefGoogle Scholar
  61. Zhang, L., Zhou, P., Newton, S., Fang, J., Zhou, D., & Zhang, L. P. (2015). Evaluating clean energy alternatives for Jiangsu, China: An improved multi-criteria decision making method. Energy, 90, 953–964.CrossRefGoogle Scholar
  62. Zhao, H., & Guo, S. (2015). External benefit evaluation of renewable energy power in China for sustainability. Sustainability, 7(5), 4783–4805.CrossRefGoogle Scholar
  63. Zimmerman, H. J. (2010). Fuzzy set theory, WIREs. Computational Statistics, 2, 317–332.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Zeynep Kezban Turgut
    • 1
  • Abdullah Çağrı Tolga
    • 1
  1. 1.Galatasaray UniversityIstanbulTurkey

Personalised recommendations