Complexity in Energy Systems

Chapter
Part of the Studies in Systems, Decision and Control book series (SSDC, volume 149)

Abstract

This chapter is designed to define the complexity concepts and reviews the use of these concepts in the energy field. Our aim is to give a summary for the motivation of this book and overview the issues and the approaches to analyze and understand those issues. Energy applications have the wide arena for complexity and therefore there is a huge variety of collaborative and computational approaches. This chapter will only review the methods considered in this book, but there are a lot more that would add value to the energy industry.

References

  1. Andersson, C., Törnberg, A., & Törnberg, P. (2014). Societal systems—Complex or worse? Futures., 63, 145–157.CrossRefGoogle Scholar
  2. Bahl, B., Lampe, M., Voll, P., & Bardow, A. (2017). Optimization-based identification and quantification of demand-side management potential for distributed energy supply systems. Energy, 135, 889–899.CrossRefGoogle Scholar
  3. Bale, C. S. E., Varga, L., & Foxon, T. J. (2015). Energy and complexity: New ways forward. Applied Energy [Internet], 138, 150–9. Available from: http://www.sciencedirect.com/science/article/pii/S0306261914011076. [cited 21 Jan 2015]
  4. Bergaentzlé, C., Clastres, C., & Khalfallah, H. (2014). Demand-side management and European environmental and energy goals: An optimal complementary approach. Energy Policy, 67, 858–869.CrossRefGoogle Scholar
  5. Berkes, F., & Berkes, M. K. (2009). Ecological complexity, fuzzy logic, and holism in indigenous knowledge. Futures, 41(1), 6–12.CrossRefGoogle Scholar
  6. Buchanan, M., & Aldana-Gonzalez, M. (2003). Nexus: Small worlds and the groundbreaking science of networks [Internet]. Physics Today (Vol. 56, 240 p). Available from: http://scitation.aip.org/content/aip/magazine/physicstoday/article/56/3/10.1063/1.1570777.
  7. Cainelli, G., De Marchi, V., & Grandinetti, R. (2015). Does the development of environmental innovation require different resources? Evidence from Spanish manufacturing firms. Journal of Cleaner Production, 94, 211–220.CrossRefGoogle Scholar
  8. Chawla, S., Malec, D., & Sivan, B. (2015). The power of randomness in Bayesian optimal mechanism design. Games and Economic Behavior, 91, 297–317.MathSciNetCrossRefMATHGoogle Scholar
  9. Das, M., & Gosh, S. K. (2017). Data-driven approaches for meteorological time series prediction: A comparative study of the state-of-the-art computational intelligence techniques. Pattern Recognit Letters 1–10.Google Scholar
  10. Driebe, D., & McDaniel, R. (2005). Uncertainty and surprise in complex systems [Internet], 19–30 p. Available from: http://www.springerlink.com/content/fh184l6783385723.
  11. Fazlollahi, S., Becker, G., Ashouri, A., & Maréchal, F. (2015). Multi-objective, multi-period optimization of district energy systems: IV—A case study. Energy [Internet]. Available from: http://www.sciencedirect.com/science/article/pii/S0360544215002856 [cited 19 Apr 2015].
  12. Frank Pai, P., & Palazotto, A. N. (2008). HHT-based nonlinear signal processing method for parametric and non-parametric identification of dynamical systems. International Journal of Mechanical Sciences, 50(12), 1619–1635.CrossRefGoogle Scholar
  13. Gamarra, C., & Guerrero, J. M. (2015). Computational optimization techniques applied to microgrids planning: A review. Renewable and Sustainable Energy Reviews., 48, 413–424.CrossRefGoogle Scholar
  14. Gass, S. I, & Harris, C. M. (Eds.). (2001). Encyclopedia of operations research & management science. Kluwer Aca. Los Angeles, 745 p.Google Scholar
  15. Gaziulusoy, A. I., & Brezet, H. (2015). Design for system innovations and transitions: A conceptual framework integrating insights from sustainability science and theories of system innovations and transitions. Journal of Cleaner Production, 108, 1–11.CrossRefGoogle Scholar
  16. Good, N., Martínez Ceseña, E. A., & Mancarella, P. (2017). Ten questions concerning smart districts. Building and Environment, 118, 362–376.CrossRefGoogle Scholar
  17. Haddadian, G., Khalili, N., Khodayar, M., & Shahidehpour, M. (2016). Optimal coordination of variable renewable resources and electric vehicles as distributed storage for energy sustainability. Sustain Energy, Grids Networks, 6, 14–24.CrossRefGoogle Scholar
  18. Hadzibeganovic, T., Stauffer, D., & Han, X. P. (2015). Randomness in the evolution of cooperation. Behavioural Processes, 113, 86–93.CrossRefGoogle Scholar
  19. Holland, J. H. (2010). Complex adaptive systems. Daedalus, 121(1), 17–30.Google Scholar
  20. Jha, S. K., Bilalovic, J., Jha, A., Patel, N., & Zhang, H. (2017). Renewable energy: Present research and future scope of artificial intelligence. Renewable and Sustainable Energy Reviews, 77, 297–317.CrossRefGoogle Scholar
  21. Kayakutlu, G., & Mercier-Laurent, E. (2017). 5—Future of Energy. In intelligence in energy [Internet]. pp. 153–198. Available from: http://www.sciencedirect.com/science/article/pii/B9781785480393500055.
  22. Kazakos, S. S., Papadopoulos, P., Grau Unda, I., Gorman, T., Belaidi, A., & Zigan, S. (2016). Multiple energy carrier optimisation with intelligent agents. Applied Energy, 167, 323–335.CrossRefGoogle Scholar
  23. Koutsourelakis, P. S. (2008). Design of complex systems in the presence of large uncertainties: A statistical approach. Computer Methods in Applied Mechanics and Engineering, 197(49–50), 4092–4103.CrossRefMATHGoogle Scholar
  24. Kramarz, M., & Kramarz, W. (2011). Simulation modelling of complex distribution systems. Procedia—Social and Behavioral Sciences [Internet], 20, 283–291. Available from: http://www.sciencedirect.com/science/article/pii/S1877042811014145.
  25. Kwapień, J., & Drożdż, S. (2012). Physical approach to complex systems. Physics Reports [Internet], 515(3–4), 115–226. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0370157312000166.
  26. Lezotre, P.-L. (2014). Part II—Value and influencing factors of the cooperation, convergence, and harmonization in the pharmaceutical sector. In International cooperation, convergence and harmonization of pharmaceutical regulations (pp. 171–219).Google Scholar
  27. Marchiori, S. C., da Silveira, Maria do Carmo, G., Lotufo, A. D. P., Minussi, C. R., & Lopes, M. L. M. (2011). Neural network based on adaptive resonance theory with continuous training for multi-configuration transient stability analysis of electric power systems. Applied Soft Computing [Internet], 11(1), 706–715. Available from: http://www.sciencedirect.com/science/article/pii/S1568494609002890.
  28. Nunna, H. S. V. S. K., Saklani, A. M., Sesetti, A., Battula, S., Doolla, S., & Srinivasan, D. (2016). Multi-agent based demand response management system for combined operation of smart microgrids. Sustain Energy, Grids Networks, 6, 25–34.CrossRefGoogle Scholar
  29. O’Sullivan, D. (2009). Complexity theory, nonlinear dynamic spatial systems. In International encyclopedia of human geography [Internet]. pp. 239–244. Available from: http://www.sciencedirect.com/science/article/pii/B9780080449104004144/pdfft?md5=8d3212b4ddbbfd6924cd04f313f17024&pid=3-s2.0-B9780080449104004144-main.pdf%5Cn.
  30. Pacheco, J. M., Vasconcelos, V. V., & Santos, F. C. (2014). Climate governance as a complex adaptive system: Reply to comments on “climate change governance, cooperation and self-organization”. Physics of Life Reviews, 11, 595–597.CrossRefGoogle Scholar
  31. Parrott, L. (2011). Hybrid modelling of complex ecological systems for decision support: Recent successes and future perspectives. Ecological Informatics, 6, 44–49.CrossRefGoogle Scholar
  32. Pfenninger, S., Hawkes, A., & Keirstead, J. (2014). Energy systems modeling for twenty-first century energy challenges. Renewable and Sustainable Energy Reviews, 33, 74–86.CrossRefGoogle Scholar
  33. Popoola, O. M. (2018). Computational intelligence modelling based on variables interlinked with behavioral tendencies for energy usage profile—A necessity. Renewable and Sustainable Energy Reviews, 82, 60–72.CrossRefGoogle Scholar
  34. Rammel, C., Stagl, S., & Wilfing, H. (2007). Managing complex adaptive systems—A co-evolutionary perspective on natural resource management. Ecological Economics, 63(1), 9–21.CrossRefGoogle Scholar
  35. Rapaport, B., & Ireland, V. (2012). Understanding the dynamics of system-of-systems in complex regional conflicts. Procedia Computer Science, 12, 43–48.CrossRefGoogle Scholar
  36. Ruano, A. E., Ge, S. S., Guerra, T. M., Lewis, F. L., Principe, J. C., & Colnarič, M. (2014). Computational intelligence in control. In IFAC Proceedings Volumes (IFAC-PapersOnline), pp. 8867–8878.Google Scholar
  37. Sayama, H., Pestov, I., Schmidt, J., Bush, B. J., Wong, C., Yamanoi, J., et al. (2013). Modeling complex systems with adaptive networks. Computers & Mathematics with Applications, 65(10), 1645–1664.MathSciNetCrossRefMATHGoogle Scholar
  38. Siano, P. (2014). Demand response and smart grids—A survey. Renewable and Sustainable Energy Reviews, 30, 461–478.CrossRefGoogle Scholar
  39. Siddaiah, R., & Saini, R. P. (2016). A review on planning, configurations, modeling and optimization techniques of hybrid renewable energy systems for off grid applications. Renewable and Sustainable Energy Reviews, 58, 376–396.CrossRefGoogle Scholar
  40. Strizh, I., Joutchkov, A., Tverdokhlebov, N., & Golitsyn, S. (2007). Systems biology and grid technologies: Challenges for understanding complex cell signaling networks. Future Generation Computer Systems, 23(3), 428–434.CrossRefGoogle Scholar
  41. Weber, G., & Cabras, I. (2018). The transition of Germany’s energy production, green economy, low-carbon economy, socio-environmental conflicts, and equitable society. Journal of Cleaner Production, 167, 1222–1231.CrossRefGoogle Scholar
  42. Zakheim, D. S. (2014). Facing the challenges of the 21st century. Orbis, 58(1), 8–14.CrossRefGoogle Scholar
  43. Zhao, Q. J., & Wen, Z. M. (2012). Integrative networks of the complex social-ecological systems. Procedia Environmental Sciences [Internet], 13, 1383–94. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1878029612001326.

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.İstanbul Technical University Energy InstituteMaslakTurkey

Personalised recommendations