Advertisement

Applications of KPFM-Based Approaches for Surface Potential and Electrochemical Measurements in Liquid

  • Liam Collins
  • Stefan A.L. WeberEmail author
  • Brian J. Rodriguez
Part of the Springer Series in Surface Sciences book series (SSSUR, volume 65)

Abstract

Kelvin probe force microscopy (KPFM) has been widely used to map nanoscale surface potentials of materials in ambient and ultra-high vacuum environments. However, to study and ultimately understand charge-related processes, e.g., in biological systems or to further improve energy storage devices such as electrochemical batteries, nanoscale surface potential measurements in liquid environments are required. Here, we describe the various implementations of KPFM-based approaches for measuring surface potentials in liquid environments. We provide practical guidelines for surface potential measurements and describe what other information can be obtained. Finally, we discuss potential applications and limitations of existing approaches and present possible solutions for the successful implementation of liquid KPFM.

Notes

Acknowledgements

A portion of the research was conducted at and supported by the Center for Nanophase Materials Sciences, which is a DOE Office of Science User Facility (LC). BJR acknowledges support from Science Foundation Ireland (14/US/I3113) and the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 644175.

References

  1. 1.
    Y. Li, G.A. Somorjai, Nano Lett. 10, 2289 (2010)ADSCrossRefGoogle Scholar
  2. 2.
    G.A. Somorjai, Y. Li, Introduction to Surface Chemistry and Catalysis (John Wiley & Sons, New York, NY, 2010)Google Scholar
  3. 3.
    F. Mansfeld, J. Appl. Electrochem. 25, 187 (1995)Google Scholar
  4. 4.
    H. Bhni, T. Suter, A. Schreyer, Electrochim. Acta 40, 1361 (1995)Google Scholar
  5. 5.
    J.R. Miller, P. Simon, Science (80) 321, 651 (2008)Google Scholar
  6. 6.
    D.S. Silvester, Analyst 136, 4871 (2011)ADSCrossRefGoogle Scholar
  7. 7.
    T.G. Drummond, T.G. Drummond, M.G. Hill, M.G. Hill, J.K. Barton, J.K. Barton, Nat. Biotechnol. 21, 1192 (2003)CrossRefGoogle Scholar
  8. 8.
    M.J. Williamson, R.M. Tromp, P.M. Vereecken, R. Hull, F.M. Ross, Nat. Mater. 2, 532 (2003)ADSCrossRefGoogle Scholar
  9. 9.
    H.A.O. Hill, Coord. Chem. Rev. 151, 115 (1996)CrossRefGoogle Scholar
  10. 10.
    A.J. Bard, L.R. Faulkner, Electrochemical Methods: Fundamentals and Applications (Wiley, New York, 2001)Google Scholar
  11. 11.
    P. Simon, Y. Gogotsi, Nat. Mater. 7, 845 (2008)ADSCrossRefGoogle Scholar
  12. 12.
    M. Winter, R.J. Brodd, Chem. Rev. 104, 4245 (2004)CrossRefGoogle Scholar
  13. 13.
    P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J.-M. Tarascon, Nature 407, 496 (2000)ADSCrossRefGoogle Scholar
  14. 14.
    D.E. Williams, C. Westcott, M. Fleischmann, J. Electrochem. Soc. 132, 1796 (1985)CrossRefGoogle Scholar
  15. 15.
    M. Park, X. Zhang, M. Chung, G.B. Less, A.M. Sastry, J. Power Sources 195, 7904 (2010)ADSCrossRefGoogle Scholar
  16. 16.
    P. Balaya, Energy Environ. Sci. 1, 645 (2008)CrossRefGoogle Scholar
  17. 17.
    J.Y. Son, K. Kyhm, J.H. Cho, Appl. Phys. Lett. 89, 92907 (2006)CrossRefGoogle Scholar
  18. 18.
    S.V. Kalinin, D.A. Bonnell, Phys. Rev. B 63, 125411 (2001)ADSCrossRefGoogle Scholar
  19. 19.
    S.A.L. Weber, H.-J.J. Butt, R. Berger, Scanning Probe Microscopic Nanoscience Nanotechnology 3 (Springer, Berlin, 2013), pp. 551–573Google Scholar
  20. 20.
    E. Drolle, K. Hammond, W.F.D. Bennett, E. Lyman, M. Karttunen, Z. Leonenko, arXiv 1607.00057 (2016)Google Scholar
  21. 21.
    F. Hane, B. Moores, M. Amrein, Z. Leonenko, Ultramicroscopy 109, 968 (2009)CrossRefGoogle Scholar
  22. 22.
    Z. Leonenko, M. Rodenstein, J. Döhner, L.M. Eng, M. Amrein, Langmuir 22, 10135 (2006)CrossRefGoogle Scholar
  23. 23.
    C. Leung, D. Maradan, A. Kramer, S. Howorka, P. Mesquida, B.W. Hoogenboom, Appl. Phys. Lett. 97, 203703 (2010)ADSCrossRefGoogle Scholar
  24. 24.
    A.K. Sinensky, A.M. Belcher, Nat. Nanotechnol. 2, 653 (2007)ADSCrossRefGoogle Scholar
  25. 25.
    M. Nonnenmacher, M.P. O’Boyle, H.K. Wickramasinghe, M.P. O’Boyle, H.K. Wickramasinghe, Appl. Phys. Lett. 58, 2921 (1991)ADSCrossRefGoogle Scholar
  26. 26.
    M.Z. Bazant, K. Thornton, A. Ajdari, Phys. Rev. E Stat. Nonlinear, Soft Mat. Phys. 70, 1 (2004)Google Scholar
  27. 27.
    M.Z. Bazant, M.S. Kilic, B.D. Storey, A. Ajdari, New J. Phys. 11, 2 (2009)CrossRefGoogle Scholar
  28. 28.
    H. Helmholtz, Ann. Phys. Chem. 89, 211 (1853)ADSCrossRefGoogle Scholar
  29. 29.
    G. Gouy, J. Phys. Theor. Appl. 9, 457 (1910)CrossRefGoogle Scholar
  30. 30.
    D.L. Chapman, Philos. Mag. Ser. 6(25), 475 (1913)CrossRefGoogle Scholar
  31. 31.
    M.Z. Bazant, K. Thornton, A. Ajdari, Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70, 21506 (2004)Google Scholar
  32. 32.
    O.Z. Stern, Electrochemistry 30, 508 (1924)Google Scholar
  33. 33.
    H.-J. Butt, K. Graf, M. Kappl, Physics and Chemistry of Interfaces (Wiley-VCH, 2006)Google Scholar
  34. 34.
    M.S. Kilic, M.Z. Bazant, A. Ajdari, Phys. Rev. E 75, 21502 (2007)ADSCrossRefGoogle Scholar
  35. 35.
    M.S. Kilic, M.Z. Bazant, A. Ajdari, Phys. Rev. E 75, 21503 (2007)ADSCrossRefGoogle Scholar
  36. 36.
    B.D. Storey, L.R. Edwards, M.S. Kilic, M.Z. Bazant, Phys. Rev. E 77, 36317 (2008)ADSCrossRefGoogle Scholar
  37. 37.
    M.Z. Bazant, K. Thornton, A. Ajdari, 1 (2008)Google Scholar
  38. 38.
    L. Collins, S. Jesse, J.I. Kilpatrick, A. Tselev, O. Varenyk, M.B. Okatan, S.AL. Weber, A. Kumar, N. Balke, S.V Kalinin, B.J. Rodriguez, Nat. Commun. 5, 3871 (2014)Google Scholar
  39. 39.
    M.Z. Bazant, M.S. Kilic, B.D. Storey, A. Ajdari, New J. Phys. 11, 75016 (2009)CrossRefGoogle Scholar
  40. 40.
    I. Borukhov, D. Andelman, H. Orland, Electrochim. Acta 46, 221 (2000)CrossRefGoogle Scholar
  41. 41.
    A.H. Boschitsch, P.V. Danilov, J. Comput. Chem. 33, 1152 (2012)CrossRefGoogle Scholar
  42. 42.
    R. Borgani, D. Forchheimer, J. Bergqvist, P.-A. Thorén, O. Inganäs, D.B. Haviland, Appl. Phys. Lett. 105, 143113 (2014)ADSCrossRefGoogle Scholar
  43. 43.
    L. Collins, A. Belianinov, S. Somnath, B.J. Rodriguez, N. Balke, S.V. Kalinin, S. Jesse, Nanotechnology 27, 105706 (2016)ADSCrossRefGoogle Scholar
  44. 44.
    L. Collins, A. Belianinov, R. Proksch, T. Zuo, Y. Zhang, P.K. Liaw, S.V. Kalinin, S. Jesse, Appl. Phys. Lett. 108, 1 (2016)CrossRefGoogle Scholar
  45. 45.
    L. Collins, S. Jesse, J.I. Kilpatrick, A. Tselev, M.B. Okatan, S.V. Kalinin, B.J. Rodriguez, Beilstein J. Nanotechnol. 6, 201 (2015)CrossRefGoogle Scholar
  46. 46.
    S. Guo, S. V. Kalinin, S. Jesse, Appl. Phys. Lett. 100, (2012)Google Scholar
  47. 47.
    L. Collins, J.I. Kilpatrick, S. a L. Weber, A Tselev, I. V Vlassiouk, I.N. Ivanov, S. Jesse, S. V Kalinin, B.J. Rodriguez, Nanotechnology 24, 475702 (2013)Google Scholar
  48. 48.
    R. Borgani, D. Forchheimer, J. Bergqvist, P.-A. Thorén, O. Inganäs, D.B. Haviland, Appl. Phys. Lett. 105, 143113 (2014)ADSCrossRefGoogle Scholar
  49. 49.
    R. Borgani, L.K.H. Pallon, M.S. Hedenqvist, U.W. Gedde, D.B. Haviland, Nano Lett. 16, 5934 (2016)ADSCrossRefGoogle Scholar
  50. 50.
    W. Ducker, T. Senden, R. Pashley, Nature 353, 239 (1991)ADSCrossRefGoogle Scholar
  51. 51.
    W.A. Ducker, T.J. Senden, R.M. Pashley, Langmuir 8, 1831 (1992)CrossRefGoogle Scholar
  52. 52.
    H.J. Butt, Biophys. J. 60, 777 (1991)CrossRefGoogle Scholar
  53. 53.
    H.J. Butt, Biophys. J. 60, 1438 (1991)CrossRefGoogle Scholar
  54. 54.
    V.G. Levadny, M.L. Belaya, D.A. Pink, M.H. Jericho, Biophys. J. 70, 1745 (1996)CrossRefGoogle Scholar
  55. 55.
    R. Raiteri, S. Martinoia, M. Grattarola, Biosensors 11, 1009 (1996)CrossRefGoogle Scholar
  56. 56.
    A.L. Weisenhorn, P. Maivald, H.J. Butt, P.K. Hansma, Phys. Rev. B 45, 11226 (1992)ADSCrossRefGoogle Scholar
  57. 57.
    H.J. Butt, M. Jaschke, W. Ducker, Bioelectrochemistry Bioenerg. 38, 191 (1995)CrossRefGoogle Scholar
  58. 58.
    H. Butt, Biophys. J. 63, 578 (1992)CrossRefGoogle Scholar
  59. 59.
    R. Raiteri, M. Grattarola, H.-J. Butt, J. Phys. Chem. 100, 16700 (1996)CrossRefGoogle Scholar
  60. 60.
    A.C. Hillier, S. Kim, A.J. Bard, J. Phys. Chem. 100, 18808 (1996)CrossRefGoogle Scholar
  61. 61.
    C. Rotsch, M. Radmacher, Langmuir 13, 2825 (1997)CrossRefGoogle Scholar
  62. 62.
    W. Heinz, J. Hoh, Biophys. J. 76, 528 (1999)CrossRefGoogle Scholar
  63. 63.
    J. Sotres, A.M. Baró, Appl. Phys. Lett. 93, 103903 (2008)ADSCrossRefGoogle Scholar
  64. 64.
    J. Sotres, A.M. Baró, Biophys. J. 98, 1995 (2010)CrossRefGoogle Scholar
  65. 65.
    C. Marlière, S. Dhahri, Nanoscale 7, 8843 (2015)ADSCrossRefGoogle Scholar
  66. 66.
    D. Ebeling, D. van den Ende, F. Mugele, Nanotechnology 22, 305706 (2011)CrossRefGoogle Scholar
  67. 67.
    K. Umeda, K. Kobayashi, N. Oyabu, K. Matsushige, H. Yamada, Nanotechnology 26, 285103 (2015)CrossRefGoogle Scholar
  68. 68.
    T.J. Senden, C.J. Drummond, P. Kekicheff, Langmuir 10, 358 (1994)CrossRefGoogle Scholar
  69. 69.
    S. Manne, J.P. Cleveland, H.E. Gaub, G.D. Stucky, P.K. Hansma, Langmuir 10, 4409 (1994)CrossRefGoogle Scholar
  70. 70.
    D.J. Müller, A. Engel, Biophys. J. 73, 1633 (1997)CrossRefGoogle Scholar
  71. 71.
    D.J. Müller, D. Fotiadis, S. Scheuring, S. a Müller, A. Engel, Biophys. J. 76, 1101 (1999)Google Scholar
  72. 72.
    A. Philippsen, W. Im, A. Engel, T. Schirmer, B. Roux, D.J. Müller, Biophys. J. 82, 1667 (2002)CrossRefGoogle Scholar
  73. 73.
    A.S. Johnson, C.L. Nehl, M.G. Mason, J.H. Hafner, Langmuir 19, 10007 (2003)CrossRefGoogle Scholar
  74. 74.
    Y. Yang, K.M. Mayer, J.H. Hafner, Biophys. J. 92, 1966 (2007)CrossRefGoogle Scholar
  75. 75.
    Y. Yang, K.M. Mayer, N.S. Wickremasinghe, J.H. Hafner, Biophys. J. 95, 5193 (2008)CrossRefGoogle Scholar
  76. 76.
    R. Raiteri, H.J. Butt, J. Phys. Chem. 99, 15728 (1995)CrossRefGoogle Scholar
  77. 77.
    A. Döppenschmidt, H.J. Butt, Colloids Surfaces A Physicochem. Eng. Asp. 149, 145 (1999)CrossRefGoogle Scholar
  78. 78.
    K. Hu, F.-R.F. Fan, A.J. Bard, A.C. Hillier, J. Phys. Chem. B 101, 8298 (1997)CrossRefGoogle Scholar
  79. 79.
    R. Raiteri, M. Preuss, M. Grattarola, H.J. Butt, Colloids Surfaces A Physicochem. Eng. Asp. 136, 191 (1998)CrossRefGoogle Scholar
  80. 80.
    B.P. Lynch, A.M. Hilton, C.H. Doerge, G.J. Simpson, Langmuir 21, 1436 (2005)CrossRefGoogle Scholar
  81. 81.
    A.M. Hilton, B.P. Lynch, G.J. Simpson, Anal. Chem. 77, 8008 (2005)CrossRefGoogle Scholar
  82. 82.
    B.P. Lynch, A.M. Hilton, G.J. Simpson, Biophys. J. 91, 2678 (2006)CrossRefGoogle Scholar
  83. 83.
    B.J. Rodriguez, S. Jesse, K. Seal, A.P. Baddorf, S.V. Kalinin, J. Appl. Phys. 103, 14306 (2008)ADSCrossRefGoogle Scholar
  84. 84.
    B.J. Rodriguez, S. Jesse, A.P. Baddorf, S.V. Kalinin, Phys. Rev. Lett. 96, 237602 (2006)ADSCrossRefGoogle Scholar
  85. 85.
    D. Denning, J. Guyonnet, B.J. Rodriguez, Int. Mater. Rev. 61, 46 (2016)CrossRefGoogle Scholar
  86. 86.
    B.J. Rodriguez, S. V. Kalinin, Springer Series Surface Science (Springer, 2012), pp. 243–287Google Scholar
  87. 87.
    B.J. Rodriguez, S. Jesse, A.P. Baddorf, S.H. Kim, S.V. Kalinin, Phys. Rev. Lett. 98, 247603 (2007)ADSCrossRefGoogle Scholar
  88. 88.
    K.I. Umeda, N. Oyabu, K. Kobayashi, Y. Hirata, K. Matsushige, H. Yamada, Appl. Phys. Express 3, 20 (2010)CrossRefGoogle Scholar
  89. 89.
    K.I. Umeda, K. Kobayashi, N. Oyabu, Y. Hirata, K. Matsushige, H. Yamada, J. Appl. Phys. 113, (2013)Google Scholar
  90. 90.
    K.I. Umeda, K. Kobayashi, K. Matsushige, H. Yamada, Appl. Phys. Lett. 101, 123112 (2012)ADSCrossRefGoogle Scholar
  91. 91.
    D.J. Marchand, E. Hsiao, S.H. Kim, Langmuir 29, 6762 (2013)CrossRefGoogle Scholar
  92. 92.
    C.J. Long, R.J. Cannara, Rev. Sci. Instrum. 86, (2015)Google Scholar
  93. 93.
    J. Zhang, D.M. Czajkowsky, Y. Shen, J. Sun, C. Fan, J. Hu, Z. Shao, Appl. Phys. Lett. 102, 73110 (2013)CrossRefGoogle Scholar
  94. 94.
    K.I. Umeda, K. Kobayashi, N. Oyabu, Y. Hirata, K. Matsushige, H. Yamada, J. Appl. Phys. 116, 134307 (2014)ADSCrossRefGoogle Scholar
  95. 95.
    L. Fumagalli, D. Esteban-Ferrer, A. Cuervo, J.L. Carrascosa, G. Gomila, Nat. Mater. 11, 808 (2012)ADSCrossRefGoogle Scholar
  96. 96.
    A. Cuervo, P.D. Dans, J.L. Carrascosa, M. Orozco, G. Gomila, L. Fumagalli, Proc. Natl. Acad. Sci. 111, E3624 (2014)ADSCrossRefGoogle Scholar
  97. 97.
    A. Dols-Perez, G. Gramse, A. Calò, G. Gomila, L. Fumagalli, Nanoscale 7, 18327 (2015)ADSCrossRefGoogle Scholar
  98. 98.
    D. Esteban-Ferrer, M.A. Edwards, L. Fumagalli, A. Ju??rez, and G. Gomila, ACS Nano 8, 9843 (2014)Google Scholar
  99. 99.
    M. Van Der Hofstadt, R. Fabregas, R. Millan-Solsona, A. Juarez, L. Fumagalli, G. Gomila, ACS Nano 10, 11327 (2016)CrossRefGoogle Scholar
  100. 100.
    G. Gomila, G. Gramse, L. Fumagalli, Nanotechnology 25, 255702 (2014)CrossRefGoogle Scholar
  101. 101.
    G. Gramse, M. Edwards, L. Fumagalli, G. Gomila, Nanotechnology 24, 415709 (2013)Google Scholar
  102. 102.
    G. Gramse, A. Dols-Perez, M.A. Edwards, L. Fumagalli, G. Gomila, Biophys. J. 104, 1257 (2013)CrossRefGoogle Scholar
  103. 103.
    T.L. Sounart, T.A. Michalske, K.R. Zavadil, J. Microelectromech. Syst. 14, 125 (2005)CrossRefGoogle Scholar
  104. 104.
    H.V. Panchawagh, T.L. Sounart, R.L. Mahajan, J. Microelectrom. Syst. 18, 1105 (2009)CrossRefGoogle Scholar
  105. 105.
    G. Gramse, M.A. Edwards, L. Fumagalli, G. Gomila, Appl. Phys. Lett. 101, 213108 (2012)ADSCrossRefGoogle Scholar
  106. 106.
    G. Gramse, M.A. Edwards, L. Fumagalli, G. Gomila, Nanotechnology 24, 415709 (2013)CrossRefGoogle Scholar
  107. 107.
    T.L. Sounart, T.A. Michalske, Transducers 2003—12th International Conference Solid-State Sensors, Actuators Microsystems, Digitalized Technical Paper vol. 1, p. 615 (2003)Google Scholar
  108. 108.
    B. Kumar, S.R. Crittenden, Nanotechnology 24, 435701 (2013)ADSCrossRefGoogle Scholar
  109. 109.
    T. Fort, R. Wells, Surf. Sci. 12, 46 (1968)ADSCrossRefGoogle Scholar
  110. 110.
    S. Bastide, D. Gal, D.C. Kronik, S. Bastide, D. Gal, D. Cahen, 4032, (1999)Google Scholar
  111. 111.
    A.L. Domanski, E. Sengupta, K. Bley, M.B. Untch, S. A L. Weber, K. Landfester, C.K. Weiss, H.-J. Butt, R. Berger, Langmuir 28, 13892 (2012)Google Scholar
  112. 112.
    L. Collins, J. Kilpatrick, S. V. Kalinin, B.J. Rodriguez (2017)Google Scholar
  113. 113.
    Q. Guo, V. Singh, S.H. Behrens, Langmuir 26, 3203 (2010)CrossRefGoogle Scholar
  114. 114.
    C.E. Espinosa, Q. Guo, V. Singh, S.H. Behrens, Langmuir 26, 16941 (2010)CrossRefGoogle Scholar
  115. 115.
    Q. Guo, J. Lee, V. Singh, S.H. Behrens, J. Colloid Interface Sci. 392, 83 (2013)ADSCrossRefGoogle Scholar
  116. 116.
    O. Takeuchi, Y. Ohrai, S. Yoshida, H. Shigekawa, Jpn. J. Appl. Phys. 46, 5626 (2007)ADSCrossRefGoogle Scholar
  117. 117.
    K. Naritaka, A. Hitoshi, F. Takeshi, Rev. Sci. Instrum. 81, 123705 (4404)Google Scholar
  118. 118.
    N. Kobayashi, H. Asakawa, T. Fukuma, J. Appl. Phys. 110, 44315 (2011)CrossRefGoogle Scholar
  119. 119.
    L. Collins, J.I. Kilpatrick, I. V. Vlassiouk, A. Tselev, S.A.L. Weber, S. Jesse, S. V. Kalinin, B.J. Rodriguez, Appl. Phys. Lett. 104, (2014)Google Scholar
  120. 120.
    N. Kobayashi, H. Asakawa, T. Fukuma, Rev. Sci. Instrum. 83, 33709 (2012)CrossRefGoogle Scholar
  121. 121.
    K. Honbo, S. Ogata, T. Kitagawa, T. Okamoto, N. Kobayashi, I. Sugimoto, S. Shima, A. Fukunaga, C. Takatoh, T. Fukuma, ACS Nano 10, 2575 (2016)CrossRefGoogle Scholar
  122. 122.
    L. Collins, S. Jesse, J.I. Kilpatrick, A. Tselev, M.B. Okatan, S.V. Kalinin, B.J. Rodriguez, Beilstein J. Nanotechnol. 6, 201 (2015)CrossRefGoogle Scholar
  123. 123.
    D.C. Coffey, D.S. Ginger, Nat. Mater. 5, 735 (2006)ADSCrossRefGoogle Scholar
  124. 124.
    J. Murawski, T. Graupner, P. Milde, R. Raupach, U. Zerweck-Trogisch, L.M. Eng, J. Appl. Phys. 118, 0 (2015)Google Scholar
  125. 125.
    J.L. Garrett, J.N. Munday, Nanotechnology 27, 245705 (2016)ADSCrossRefGoogle Scholar
  126. 126.
    L. Collins, A. Belianinov, S. Somnath, N. Balke, S.V. Kalinin, S. Jesse, Sci. Rep. 6, 30557 (2016)ADSCrossRefGoogle Scholar
  127. 127.
    L. Collins, A. Belianinov, R. Proksch, T. Zuo, Y. Zhang, P.K. Liaw, S.V. Kalinin, S. Jesse, Appl. Phys. Lett. 108, 1 (2016)CrossRefGoogle Scholar
  128. 128.
    L. Collins, M. Ahmadi, T. Wu, B. Hu, S.V. Kalinin, S. Jesse, ACS Nano 11, 8717 (2017)Google Scholar
  129. 129.
    B.J. Rodriguez, S. Jesse, K. Seal, A.P. Baddorf, S.V. Kalinin, P.D. Rack, Appl. Phys. Lett. 91, 93130 (2007)CrossRefGoogle Scholar
  130. 130.
    J.H. Noh, M. Nikiforov, S. V. Kalinin, A. A. Vertegel, P.D. Rack, Nanotechnology 21, 365302 (2010)Google Scholar
  131. 131.
    D. Ziegler, A. Klaassen, D. Bahri, D. Chmielewski, A. Nievergelt, F. Mugele, J.E. Sader, P.D. Ashby, in 2014 IEEE 27th International Conference of the Micro Electro Mechanical System (IEEE, 2014), pp. 128–131Google Scholar
  132. 132.
    S.V. Kalinin, E. Strelcov, A. Belianinov, S. Somnath, R.K. Vasudevan, E.J. Lingerfelt, R.K. Archibald, C. Chen, R. Proksch, N. Laanait, S. Jesse, ACS Nano 10, 9068 (2016)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Liam Collins
    • 1
  • Stefan A.L. Weber
    • 2
    Email author
  • Brian J. Rodriguez
    • 3
  1. 1.Center for Nanophase Materials Sciences and Institute for Functional Imaging of MaterialsOak Ridge National LaboratoryOak RidgeUSA
  2. 2.Max Planck Institute for Polymer ResearchMainzGermany
  3. 3.School of Physics and Conway Institute of Biomedical and Biomolecular ResearchUniversity College DublinDublinIreland

Personalised recommendations