Skip to main content

KPFM of Nanostructured Electrochemical Sensors

  • Chapter
  • First Online:

Part of the book series: Springer Series in Surface Sciences ((SSSUR,volume 65))

Abstract

Integrating sensor arrays with microelectronic devices enables applications such as disease diagnostics and environmental monitoring. The most advanced chemical sensor concepts, compatible with integrated circuits, comprise a semiconductor with a nanostructured sensing area that can be modified to be more selective and sensitive to specific analytes. The target molecules react with the exposed surface area and may dope the semiconductor, alter the surface charge density, and polarize the surface, which in turn affects the current that flows through the semiconductor via field-effect and charge transfer. KPFM allows probing the smallest variations of the surface charge density and band bending on a nanometer scale. Unique in this sense, KPFM can be used to detect the work function changes following adsorption and map the potential landscape of a nanostructured sensor surface to locate the most sensitive region. The chapter describes how KPFM helps to advance research and development of chemical sensors.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. B. Hagenhoff, Microchim. Acta 132(2–4), 259 (2000)

    Google Scholar 

  2. N. Winograd, Anal. Chem. 77(7), 142 (2005)

    Article  Google Scholar 

  3. K.R. Ratinac, W. Yang, S.P. Ringer, F. Braet, Environ. Sci. Technol. 44(4), 1167 (2010)

    Article  ADS  Google Scholar 

  4. G. Lu, L.E. Ocola, J. Chen, Nanotechnology 20(44), 445502 (2009)

    Article  Google Scholar 

  5. F. Schedin, A. Geim, S. Morozov, E. Hill, P. Blake, M. Katsnelson, K. Novoselov, Nat. Mater. 6(9), 652 (2007)

    Article  ADS  Google Scholar 

  6. J.D. Fowler, M.J. Allen, V.C. Tung, Y. Yang, R.B. Kaner, B.H. Weiller, ACS Nano 3(2), 301 (2009)

    Article  Google Scholar 

  7. Y. Liu, X. Dong, P. Chen, Chem. Soc. Rev. 41(6), 2283 (2012)

    Article  Google Scholar 

  8. J.T. Robinson, F.K. Perkins, E.S. Snow, Z. Wei, P.E. Sheehan, Nano Lett. 8(10), 3137 (2008)

    Article  ADS  Google Scholar 

  9. F.K. Perkins, A.L. Friedman, E. Cobas, P. Campbell, G. Jernigan, B.T. Jonker, Nano Lett. 13(2), 668 (2013)

    Article  ADS  Google Scholar 

  10. Y. Cui, Q. Wei, H. Park, C.M. Lieber, Science 293(5533), 1289 (2001)

    Article  ADS  Google Scholar 

  11. A. Kolmakov, M. Moskovits, Annu. Rev. Mater. Res. 34, 151 (2004)

    Article  ADS  Google Scholar 

  12. D. Zhang, Z. Liu, C. Li, T. Tang, X. Liu, S. Han, B. Lei, C. Zhou, Nano Lett. 4(10), 1919 (2004)

    Article  ADS  Google Scholar 

  13. G. Zheng, F. Patolsky, Y. Cui, W.U. Wang, C.M. Lieber, Nat. Biotechnol. 23(10), 1294 (2005)

    Article  Google Scholar 

  14. X.J. Huang, Y.K. Choi, Sens. Actuators B Chem. 122(2), 659 (2007)

    Article  Google Scholar 

  15. A. Cao, E.J. Sudhölter, L.C. de Smet, Sensors 14(1), 245 (2013)

    Article  Google Scholar 

  16. Y. Paska, T. Stelzner, S. Christiansen, H. Haick, ACS Nano 5(7), 5620 (2011)

    Article  Google Scholar 

  17. X. Zhao, B. Cai, Q. Tang, Y. Tong, Y. Liu, Sensors 14(8), 13999 (2014)

    Article  Google Scholar 

  18. J. Kong, N.R. Franklin, C. Zhou, M.G. Chapline, S. Peng, K. Cho, H. Dai, Science 287(5453), 622 (2000)

    Article  ADS  Google Scholar 

  19. P.G. Collins, K. Bradley, M. Ishigami, A. Zettl, Science 287(5459), 1801 (2000)

    Article  ADS  Google Scholar 

  20. J. Li, Y. Lu, Q. Ye, M. Cinke, J. Han, M. Meyyappan, Nano Lett. 3(7), 929 (2003)

    Article  ADS  Google Scholar 

  21. P. Alivisatos, Nat. Biotechnol. 22(1), 47 (2004)

    Article  Google Scholar 

  22. G. Peng, U. Tisch, O. Adams, M. Hakim, N. Shehada, Y.Y. Broza, S. Billan, R. Abdah-Bortnyak, A. Kuten, H. Haick, Nat. Nanotechnol. 4(10), 669 (2009)

    Article  ADS  Google Scholar 

  23. M.C. McAlpine, H. Ahmad, D. Wang, J.R. Heath, Nat. Mater. 6(5), 379 (2007)

    Article  ADS  Google Scholar 

  24. Y. Engel, R. Elnathan, A. Pevzner, G. Davidi, E. Flaxer, F. Patolsky, Angew. Chem. Int. Ed. 49(38), 6830 (2010)

    Article  Google Scholar 

  25. F. Patolsky, C.M. Lieber, Mat. Today 8(4), 20 (2005)

    Article  Google Scholar 

  26. C.J. Chu, C.S. Yeh, C.K. Liao, L.C. Tsai, C.M. Huang, H.Y. Lin, J.J. Shyue, Y.T. Chen, C.D. Chen, Nano Lett. 13(6), 2564 (2013)

    Article  ADS  Google Scholar 

  27. A. Niskanen, A. Colli, R. White, H. Li, E. Spigone, J. Kivioja, Nanotechnology 22(29), 295502 (2011)

    Article  Google Scholar 

  28. Y. Paska, T. Stelzner, O. Assad, U. Tisch, S. Christiansen, H. Haick, ACS Nano 6(1), 335 (2012)

    Article  Google Scholar 

  29. B. Wang, J.C. Cancilla, J.S. Torrecilla, H. Haick, Nano Lett. 14(2), 933 (2014)

    Article  ADS  Google Scholar 

  30. F. Patolsky, G. Zheng, C.M. Lieber, Nanomedicine 1(1), 51 (2006)

    Article  Google Scholar 

  31. O. Assad, H. Haick, in IEEE International Symposium on, Industrial Electronics, 2008. ISIE 2008. (IEEE, 2008), pp. 2040–2044

    Google Scholar 

  32. E. Buitrago, M. Fernández-Bolaños, S. Rigante, C.F. Zilch, N.S. Schröter, A.M. Nightingale, A.M. Ionescu, Sens. Actuators B Chem. 193, 400 (2014)

    Article  Google Scholar 

  33. C.Y. Lee, S. Baik, J. Zhang, R.I. Masel, M.S. Strano, J. Phys. Chem. B 110(23), 11055 (2006)

    Article  Google Scholar 

  34. S. Rigante, P. Scarbolo, M. Wipf, R.L. Stoop, K. Bedner, E. Buitrago, A. Bazigos, D. Bouvet, M. Calame, C. Schnenberger et al., ACS Nano 9(5), 4872 (2015)

    Article  Google Scholar 

  35. G. Shalev, G. Landman, I. Amit, Y. Rosenwaks, I. Levy, NPG Asia Mater. 5(3), e41 (2013)

    Article  Google Scholar 

  36. A. Henning, N. Swaminathan, A. Godkin, G. Shalev, I. Amit, Y. Rosenwaks, Nano Res. 8(7), 2206 (2015)

    Article  Google Scholar 

  37. H.M. Fahad, H. Shiraki, M. Amani, C. Zhang, V.S. Hebbar, W. Gao, H. Ota, M. Hettick, D. Kiriya, Y.Z. Chen et al., Sci. Adv. 3(3), e1602557 (2017)

    Google Scholar 

  38. Z. Feng, B. Chen, S. Qian, L. Xu, L. Feng, Y. Yu, R. Zhang, J. Chen, Q. Li, Q. Li, C. Sun, H. Zhang, J. Liu, W. Pang, D. Zhang, 2D Materials 3(3), 035021 (2016). http://stacks.iop.org/2053-1583/3/i=3/a=035021

  39. P. Bergveld, IEEE Trans. Biomed. Eng. 1(BME-17), 70 (1970)

    Google Scholar 

  40. P. Bergveld, Sens. Actuators 8(2), 109 (1985)

    Article  ADS  Google Scholar 

  41. I. Lundstrom, S. Shivaraman, C. Svensson, L. Lundkvist, Appl. Phys. Lett. 26(2), 55 (1975)

    Article  ADS  Google Scholar 

  42. O. Shaya, M. Shaked, Y. Usherenko, E. Halpern, G. Shalev, A. Doron, I. Levy, Y. Rosenwaks, J. Phys. Chem. C 113(15), 6163 (2009)

    Article  Google Scholar 

  43. F. Mohn, L. Gross, N. Moll, G. Meyer, Nat. Nanotechnol. 7(4), 227 (2012)

    Article  ADS  Google Scholar 

  44. J. Voorthuyzen, K. Keskin, P. Bergveld, Surf. Sci. 187(1), 201 (1987)

    Article  ADS  Google Scholar 

  45. H. Sugimura, Y. Ishida, K. Hayashi, O. Takai, N. Nakagiri, Appl. Phys. Lett. 80(8), 1459 (2002)

    Article  ADS  Google Scholar 

  46. A.L. Domanski, E. Sengupta, K. Bley, M.B. Untch, S.A.L. Weber, K. Landfester, C.K. Weiss, H.J. Butt, R. Berger, Langmuir 28(39), 13892 (2012). https://doi.org/10.1021/la302451h. http://dx.doi.org/10.1021/la302451h. PMID: 22946889

  47. K. Nam, K. Eom, J. Yang, J. Park, G. Lee, K. Jang, H. Lee, S.W. Lee, D.S. Yoon, C.Y. Lee et al., J. Mater. Chem. 22(44), 23348 (2012)

    Article  Google Scholar 

  48. T. Kwon, J. Park, G. Lee, K. Nam, Y.M. Huh, S.W. Lee, J. Yang, C.Y. Lee, K. Eom, J. Phys. Chem. Lett. 4(7), 1126 (2013). https://doi.org/10.1021/jz400087m. http://dx.doi.org/10.1021/jz400087m. PMID: 26282031

  49. R.W. Friddle, M.C. Lemieux, G. Cicero, A.B. Artyukhin, V.V. Tsukruk, J.C. Grossman, G. Galli, A. Noy, Nat. Nanotechnol. 2(11), 692 (2007)

    Google Scholar 

  50. A. Henning, M. Molotskii, N. Swaminathan, Y. Vaknin, A. Godkin, G. Shalev, Y. Rosenwaks, Small 11(37), 4931 (2015)

    Google Scholar 

  51. S.V. Kalinin, D.A. Bonnell, Nano Lett. 4(4), 555 (2004)

    Article  ADS  Google Scholar 

  52. F. Robin, H. Jacobs, O. Homan, A. Stemmer, W. Bächtold, Appl. Phys. Lett. 76(20), 2907 (2000)

    Article  ADS  Google Scholar 

  53. E. Strassburg, A. Boag, Y. Rosenwaks, Rev. Sci. Instrum. 76(8), 083705 (2005)

    Article  ADS  Google Scholar 

  54. D. Cahen, R. Naaman, Z. Vager, Adv. Funct. Mater. 15(10), 1571 (2005)

    Article  ADS  Google Scholar 

  55. J. Lü, E. Delamarche, L. Eng, R. Bennewitz, E. Meyer, H.J. Güntherodt, Langmuir 15(23), 8184 (1999)

    Article  Google Scholar 

  56. M. Delalande, S. Clavaguera, M. Toure, A. Carella, S. Lenfant, D. Deresmes, D. Vuillaume, J.P. Simonato, Chem. Commun. 47(21), 6048 (2011)

    Article  Google Scholar 

  57. B.R. Goldsmith, J.G. Coroneus, J.A. Lamboy, G.A. Weiss, P.G. Collins, J. Mater. Res. 23(05), 1197 (2008)

    Article  ADS  Google Scholar 

  58. C.C. Tsai, P.L. Chiang, C.J. Sun, T.W. Lin, M.H. Tsai, Y.C. Chang, Y.T. Chen, Nanotechnology 22(13), 135503 (2011). http://stacks.iop.org/0957-4484/22/i=13/a=135503

  59. D.M. Taylor, O.N.D. Oliveira, H. Morgan, J. Colloid Interface Sci. 139(2), 508 (1990). https://doi.org/10.1016/0021-9797(90)90123-6. http://www.sciencedirect.com/science/article/pii/0021979790901236

  60. C.H. Kuo, C.P. Liu, S.H. Lee, H.Y. Chang, W.C. Lin, Y.W. You, H.Y. Liao, J.J. Shyue, Phys. Chem. Chem. Phys. 13(33), 15122 (2011)

    Article  Google Scholar 

  61. E. Atanassova, T. Dimitrova, Solid-State Electron. 36(12), 1711 (1993)

    Article  ADS  Google Scholar 

  62. C.C. Chang, M.C. Shu, J. Phys. Chem. B 107(29), 7076 (2003)

    Article  Google Scholar 

  63. D.R. Lide, CRC handbook of chemistry and physics 2004–2005: a ready-reference book of chemical and physical data (2004)

    Google Scholar 

  64. S. Mizushima, Metrologia 41(3), 137 (2004)

    Article  ADS  Google Scholar 

  65. A.L. McClellan, H. Harnsberger, J. Colloid Interface Sci. 23(4), 577 (1967)

    Article  ADS  Google Scholar 

  66. W. Shockley, H. Queisser, W. Hooper, Phys. Rev. Lett. 11(11), 489 (1963)

    Article  ADS  Google Scholar 

  67. K. Domanskỳ, Y. Leng, C.C. Williams, J. Janata, D. Petelenz, Appl. Phys. Lett. 63(11), 1513 (1993)

    Article  ADS  Google Scholar 

  68. R.F. Gouveia, C.A. Costa, F. Galembeck, J. Phys. Chem. C 112(44), 17193 (2008)

    Article  Google Scholar 

  69. C.E. Kehayias, S. MacNaughton, S. Sonkusale, C. Staii, Nanotechnology 24(24), 245502 (2013)

    Article  ADS  Google Scholar 

  70. K. Smaali, D. Guerin, V. Passi, L. Ordronneau, A. Carella, T. Mlin, E. Dubois, D. Vuillaume, J.P. Simonato, S. Lenfant, J. Phys. Chem. C 120(20), 11180 (2016)

    Article  Google Scholar 

  71. W. Shockley, W. Hooper, H. Queisser, W. Schroen, Surf. Sci. 2, 277 (1964)

    Article  ADS  Google Scholar 

  72. B. Salgin, R.F. Hamou, M. Rohwerder, Electrochim. Acta 110, 526 (2013)

    Article  Google Scholar 

  73. S.V. Kalinin, J. Shin, S. Jesse, D. Geohegan, A. Baddorf, Y. Lilach, M. Moskovits, A. Kolmakov, J. Appl. Phys. 98(4), 044503 (2005)

    Google Scholar 

  74. Š. Vaškelis, V. Bukauskas, A. Mironas, A. Šetkus, Procedia Eng. 87, 1063 (2014). https://doi.org/10.1016/j.proeng.2014.11.346. http://www.sciencedirect.com/science/article/pii/S1877705814024618. EUROSENSORS 2014, the 28th European Conference on Solid-State Transducers

  75. R. Grover, B.M. Carthy, Y. Zhao, G.E. Jabbour, D. Sarid, G.M. Laws, B.R. Takulapalli, T.J. Thornton, D. Gust, Appl. Phys. Lett. 85(17), 3926 (2004). https://doi.org/10.1063/1.1810209. http://dx.doi.org/10.1063/1.1810209

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alex Henning .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Henning, A., Rosenwaks, Y. (2018). KPFM of Nanostructured Electrochemical Sensors. In: Sadewasser, S., Glatzel, T. (eds) Kelvin Probe Force Microscopy. Springer Series in Surface Sciences, vol 65. Springer, Cham. https://doi.org/10.1007/978-3-319-75687-5_12

Download citation

Publish with us

Policies and ethics