Fatigue Crack Propagation Limit Curves for High Strength Steels and Their Welded Joints Based on Two-Stage Relationship

Conference paper
Part of the Lecture Notes in Mechanical Engineering book series (LNME)

Abstract

The objective of the paper is to present the newest results of our complex research work. In order to determine and compare the fatigue resistance, fatigue crack growth tests were performed on S690QL and S960QL quenched and tempered (Q+T) type high strength steels. 15 mm thick base materials (SSAB Weldox 700E and Weldox 960E) were used for our investigations. Welded joints were made from these base materials, using gas metal arc welding (GMAW) with matching (M) filler metals (Thyssen UNION X85 and UNION X96). In the paper, the performance of the welding experiments will be presented; together with the results of the fatigue crack growth (FCG) examinations executed on the base materials (BM) and their welded joints (WJ). Statistical aspects were applied both for presenting the possible crack locations in the base materials and the welded joints, as well as for processing the measured data. Furthermore, the results will be compared with each other, and fatigue crack propagation limit curves will be derived using two-stage relationship.

Keywords

High strength steel Gas metal arc welding Matching Fatigue crack growth Limit curve 

Notes

Acknowledgements

The presented work was carried out as part of the EFOP-3.6.1-16-2016-00011 “Younger and Renewing UniversityInnovative Knowledge Cityinstitutional development of the University of Miskolc aiming at intelligent specialization” project implemented in the framework of the Széchenyi 2020 program. The realization of this project is supported by the European Union, co-financed by the European Social Fund.

References

  1. 1.
    Steel: a key partner in the European low-carbon economy of tomorrow. European Steel Technology Platform, March 2009. http://cordis.europa.eu/pub/estep/docs/steelpaper_en.pdf. Last Accessed 29 Dec 2017
  2. 2.
    Strategic Research Agenda – A Vision for the Future of the Steel Sector. 2nd edn. European Steel Technology Platform, May 2013. https://www.estep.eu/assets/SRA-2013.pdf. Last Accessed 29 Dec 2017
  3. 3.
    Tindall, P.: Aluminium in bridges. In: ICE Manual of Bridge Engineering, pp. 345–355. Institution of Civil Engineers (2008)Google Scholar
  4. 4.
    Mazumdar, S.: Driving fuel efficiency in the automotive industry using composites (2015). https://www.composites-europe.com/dl/21/download/pdf/CE2016-Vortrag2015-Lucintel.pdf. Last Accessed 29 Dec 2017
  5. 5.
    Blacha, S., Wegkowski, M.S., Dymek, S., Kopyscianski, M.: Microstructural and mechanical characterization of electron beam welded joints of high strength S960QL and Weldox 1300 steel grades. Arch. Metall. Mater. 62(2), 627–634 (2017)CrossRefGoogle Scholar
  6. 6.
    Gáspár, M., Balogh, A., Sas, I.: Physical simulation aided process optimisation aimed sufficient HAZ toughness for quenched and tempered AHSS. In: Proceedings of IIW 2015 International Conference, Paper IIW 2015 1504, pp. 1–7 (2015)Google Scholar
  7. 7.
    Kalácska, E., Májlinger, K., Fábián, E.R., Spena, P.R.: MIG-welding of dissimilar advanced high strength steel sheets. Mater. Sci. Forum 885, 80–85 (2017)CrossRefGoogle Scholar
  8. 8.
    Májlinger, K., Kalácska, E., Pasquale, R.S.: Gas metal arc welding of dissimilar AHSS sheets. Mater. Des. 109, 615–621 (2016)CrossRefGoogle Scholar
  9. 9.
    Balogh, A., Lukács, J., Török, I. (eds.) Weldability and the Properties of the Welded Joints, 1st edn. University of Miskolc, Miskolc (2015). (In Hungarian)Google Scholar
  10. 10.
    de Jesus, A.M.P., Matos, R., Fontoura, B.F.C., Rebelo, C., da Silva, L.S., Veljkovic, M.: A comparison of the fatigue behavior between S355 and S690 steel grades. J. Constr. Steel Res. 79, 140–150 (2012)CrossRefGoogle Scholar
  11. 11.
    Ravi, S., Balasubramanian, V., Nasser, S.N.: Effect of mis-match ratio (MMR) on fatigue crack growth behaviour of HSLA steel welds. Eng. Fail. Anal. 11, 413–428 (2004)CrossRefGoogle Scholar
  12. 12.
    Ravi, S., Balasubramanian, V., Babu, S., Nasser, S.N.: Influences of MMR, PWHT and notch location on fatigue life of HSLA steel welds. Eng. Fail. Anal. 11, 619–634 (2004)CrossRefGoogle Scholar
  13. 13.
    Ravi, S., Balasubramanian, V., Babu, S., Nasser, S.N.: Assessment of some factors influencing the fatigue life of strength mis-matched HSLA steel weldments. Mater. Des. 25, 125–135 (2004)CrossRefGoogle Scholar
  14. 14.
    FKM-Richtlinie Bruchmechanischer Festigkeitsnachweis für Maschinenbauteile. 3rd edn. VDMA Verlag (2009)Google Scholar
  15. 15.
    Lukács, J., Nagy, Gy., Harmati, I., Koritárné, F.R., Kuzsella, Lné.K.Zs.: Structural Integrity of Engineering Structures, 1st edn. University of Miskolc, Miskolc (2012). (In Hungarian)Google Scholar
  16. 16.
    Paris, P., Erdogan, F.: A critical analysis of crack propagation laws. J. Basic Eng. Trans. ASME 85, 528–534 (1963)CrossRefGoogle Scholar
  17. 17.
    Gáspár, M., Balogh, A.: Efficient increase of the productivity of GMA welding of AHSS using flux cored wire. In: Jármai, K., Farkas, J. (eds.) Design, Fabrication and Economy of Metal Structures, pp. 463–468. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  18. 18.
    Dobosy, Á., Gáspár, M., Jámbor, P.: Weldability of S960M thermo-mechanically treated advanced high strength steel. In: 3rd Young Welding Professionals International Conference (YPIC 2017), Halle (Saale), pp. 1–6 (2017)Google Scholar
  19. 19.
    ASTM E 647: Standard test method for measurement of fatigue crack growth rates (1988)Google Scholar
  20. 20.
    Owen, D.B.: Handbook of Statistical Tables. Vychislitel’nyjj Centr AN SSSR, Moskva (1973). (In Russian)MATHGoogle Scholar
  21. 21.
    Lukács, J.: Fatigue crack propagation limit curves for different metallic and non-metallic materials. Mater. Sci. Forum 414-415, 31–36 (2003)CrossRefGoogle Scholar
  22. 22.
    Ritchie, R.O.: Near-threshold fatigue-crack propagation in steels. Int. Mater. Rev. 5-6, 205–230 (1979)CrossRefGoogle Scholar
  23. 23.
    Taylor, D., Jianchun, L. (eds.) Sourcebook on Fatigue Crack Propagation: Threshold and Crack Closure. 1st edn. EMAS, Warley (1993)Google Scholar
  24. 24.
    Marines-García, I., Galván-Montiel, D., Bathias, C.: Fatigue life assessment of high-strength, low-alloy steel at high frequency. Arab. J. Sci. Eng. 33(1B), 237–247 (2008)Google Scholar
  25. 25.
    Pijpers, R.J.M., Kolstein, M.H., Romeijn, A., Bijlaard, F.S.K.: Fatigue experiments on very high strength steel base material and transverse butt welds. Adv. Steel Constr. 5(1), 14–32 (2007)Google Scholar
  26. 26.
    Hamme, U., Hauser, J., Kern, A., Schriever, U.: Einsatz hochfester Baustähle im Mobilkranbau. Stahlbau 69(4), 295–305 (2000)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.University of MiskolcMiskolc-EgyetemvárosHungary

Personalised recommendations