Advertisement

A Review on the Effect of Alternative Fuels on the Friction and Wear of Internal Combustion Engines

  • András Lajos Nagy
  • Jan Knaup
  • Ibolya Zsoldos
Conference paper
Part of the Lecture Notes in Mechanical Engineering book series (LNME)

Abstract

The climate policy of the EU specifies strict limits for harmful exhaust gases of passenger cars and commercial vehicles. Electric Mobility plays a significant role in reaching the fleet targets, but internal combustion engines (ICEs) will still be necessary in the next 30 years in medium to long distance transportation. Within the scope of this review article, research activities concerning engine performance, exhaust emissions, friction, wear and corrosion of components in relation to drop-in fuel alternatives, as well as the impact of such fuels on the degradation of the lubricant will be presented. Production pathways and properties of alternative fuels will be briefly introduced.

Keywords

Alternative fuel Biofuel Oil oxidation Lubricant degradation 

References

  1. 1.
    European Commission: A 2030 framework for climate and energy policies (2013). http://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:52013DC0169
  2. 2.
    Council of the European Union, European Parliament: Regulation (EU) No 333/2014 of the European Parliament and of the Council of 11 March 2014 amending Regulation (EC) No 443/2009 to define the modalities for reaching the 2020 target to reduce CO2 emissions from new passenger cars (2014). https://publications.europa.eu/en/publication-detail/-/publication/5b971540-bc8f-11e3-86f9-01aa75ed71a1/language-en
  3. 3.
    Tsokolis, D., Tsiakmakis, S., Dimaratos, A., Fontaras, G., Pistikopoulos, P., Ciuffo, B., Samaras, Z.: Fuel consumption and CO2 emissions of passenger cars over the new worldwide harmonized test protocol. Appl. Energy 179, 1152–1165 (2016)CrossRefGoogle Scholar
  4. 4.
    Mock, P.: Real-driving emissions test procedure for exhaust gas pollutant emissions of cars and light commercial vehicles in Europe. Int. Counc. Clean Transp. (2017). https://www.theicct.org/publications/real-driving-emissions-test-procedure-exhaust-gas-pollutant-emissions-cars-and-light
  5. 5.
    Sripad, S., Viswanathan, V.: Performance metrics required of next-generation batteries to make a practical electric semi truck. ACS Energy Lett. 2, 1669–1673 (2017)CrossRefGoogle Scholar
  6. 6.
    Ridjan, I., Mathiesen, B.V., Connolly, D., Duić, N.: The feasibility of synthetic fuels in renewable energy systems. Energy 57, 76–84 (2013)CrossRefGoogle Scholar
  7. 7.
    Mohr, A., Raman, S.: Lessons from first generation biofuels and implications for the sustainability appraisal of second generation biofuels. Energy Policy 63, 114–122 (2013)CrossRefGoogle Scholar
  8. 8.
    Naik, S.N., Goud, V.V., Rout, P.K., Dalai, A.K.: Production of first and second generation biofuels: a comprehensive review. Renew. Sustain. Energy Rev. 14, 578–597 (2010)CrossRefGoogle Scholar
  9. 9.
    Teixeira, R.E.: Energy-efficient extraction of fuel and chemical feedstocks from algae. Green Chem. 14, 419 (2012)CrossRefGoogle Scholar
  10. 10.
    Schemme, S., Samsun, R.C., Peters, R., Stolten, D.: Power-to-fuel as a key to sustainable transport systems – an analysis of diesel fuels produced from CO2 and renewable electricity. Fuel 205, 198–221 (2017)CrossRefGoogle Scholar
  11. 11.
    Schmitz, N., Burger, J., Ströfer, E., Hasse, H.: From methanol to the oxygenated diesel fuel poly(oxymethylene) dimethyl ether: an assessment of the production costs. Fuel 185, 67–72 (2016)CrossRefGoogle Scholar
  12. 12.
    Zeman, F.S., Keith, D.W.: Carbon neutral hydrocarbons. Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 366, 3901–3918 (2008)CrossRefGoogle Scholar
  13. 13.
    Brynolf, S., Taljegard, M., Grahn, M., Hansson, J.: Electrofuels for the transport sector: a review of production costs. Renew. Sustain. Energy Rev. 81, 1887–1905 (2018). Part 2CrossRefGoogle Scholar
  14. 14.
    Xiao, H., Hou, B., Zeng, P., Jiang, A., Hou, X., Liu, J.: Combustion and emission characteristics of diesel engine fueled with 2,5-dimethylfuran and diesel blends. Fuel 192, 53–59 (2017)CrossRefGoogle Scholar
  15. 15.
    Khuong, L.S., Masjuki, H.H., Zulkifli, N.W.M., Mohamad, E.N., Kalam, M.A., Alabdulkarem, A., Arslan, A., Mosarof, M.H., Syahir, A.Z., Jamshaid, M.: Effect of gasoline–bioethanol blends on the properties and lubrication characteristics of commercial engine oil. RSC Adv. 7, 15005–15019 (2017)CrossRefGoogle Scholar
  16. 16.
    Tamilselvan, P., Nallusamy, N., Rajkumar, S.: A comprehensive review on performance, combustion and emission characteristics of biodiesel fuelled diesel engines. Renew. Sustain. Energy Rev. 79, 1134–1159 (2017)CrossRefGoogle Scholar
  17. 17.
    Sakthivel, R., Ramesh, K., Purnachandran, R., Mohamed Shameer, P.: A review on the properties, performance and emission aspects of the third generation biodiesels. Renew. Sustain. Energy Rev. 82, 2970–2992 (2017)CrossRefGoogle Scholar
  18. 18.
    Li, B., Li, Y., Liu, H., Liu, F., Wang, Z., Wang, J.: Combustion and emission characteristics of diesel engine fueled with biodiesel/PODE blends. Appl. Energy 206, 425–431 (2017)CrossRefGoogle Scholar
  19. 19.
    Manzetti, S., Andersen, O.: A review of emission products from bioethanol and its blends with gasoline. Background for new guidelines for emission control. Fuel 140, 293–301 (2015)CrossRefGoogle Scholar
  20. 20.
    Thangavelu, S.K., Ahmed, A.S., Ani, F.N.: Review on bioethanol as alternative fuel for spark ignition engines. Renew. Sustain. Energy Rev. 56, 820–835 (2016)CrossRefGoogle Scholar
  21. 21.
    Pandey, A.K., Nandgaonkar, M.R., Sivakumar, P., Kammanni Veerabhadrappa, A.K., Kumarasamy, A.: Comparison and evaluation of performance, emission and wear analysis of diesel, JP-8 and pure karanja biodiesel in a military 780 hp CIDI engine. In: Heat Transfer and Thermal Engineering, vol. 8A, p. V08AT09A017. ASME (2013)Google Scholar
  22. 22.
    Devitt, M., Drysdale, D.W., MacGillivray, I., Norris, A.J., Thompson, R., Twidell, J.W.: Biofuel for transport: an investigation into the viability of rape methyl ester (RME) as an alternative to diesel fuel. Int. J. Ambient Energy 14, 195–218 (1993)CrossRefGoogle Scholar
  23. 23.
    Zare, A., Bodisco, T.A., Nabi, M.N., Hossain, F.M., Rahman, M.M., Ristovski, Z.D., Brown, R.J.: The influence of oxygenated fuels on transient and steady-state engine emissions. Energy 121, 841–853 (2017)CrossRefGoogle Scholar
  24. 24.
    Zare, A., Nabi, M.N., Bodisco, T.A., Hossain, F.M., Rahman, M.M., Van Chu, T., Ristovski, Z.D., Brown, R.J.: Diesel engine emissions with oxygenated fuels: a comparative study into cold-start and hot-start operation. J. Clean. Prod. 162, 997–1008 (2017)CrossRefGoogle Scholar
  25. 25.
    Iannuzzi, S.E., Barro, C., Boulouchos, K., Burger, J.: POMDME-diesel blends: evaluation of performance and exhaust emissions in a single cylinder heavy-duty diesel engine. Fuel 203, 57–67 (2017)CrossRefGoogle Scholar
  26. 26.
    Costagliola, M.A., Prati, M.V., Florio, S., Scorletti, P., Terna, D., Iodice, P., Buono, D., Senatore, A.: Performances and emissions of a 4-stroke motorcycle fuelled with ethanol/gasoline blends. Fuel 183, 470–477 (2016)CrossRefGoogle Scholar
  27. 27.
    López-Aparicio, S., Hak, C.: Evaluation of the use of bioethanol fuelled buses based on ambient air pollution screening and on-road measurements. Sci. Total Environ. 452–453, 40–49 (2013)CrossRefGoogle Scholar
  28. 28.
    ASTM: ASTM D6078 - 04(2016) Standard Test Method for Evaluating Lubricity of Diesel Fuels by the Scuffing Load Ball-on-Cylinder Lubricity Evaluator (SLBOCLE) (2016)Google Scholar
  29. 29.
    ASTM: ASTM D6079 - 11(2016) Standard Test Method for Evaluating Lubricity of Diesel Fuels by the High-Frequency Reciprocating Rig (HFRR) (2016)Google Scholar
  30. 30.
    ISO: ISO 12156-1:2016 Diesel fuel—Assessment of lubricity using the high-frequency reciprocating rig (HFRR)—Part 1: Test method (2016). https://www.iso.org/standard/65227.html
  31. 31.
    ASTM: ASTM D975 Standard Specification for Diesel Fuel Oils (2017). https://www.astm.org/Standards/D975.htm
  32. 32.
    CEN: EN 590:2013 + A1:2017 Automotive fuels - Diesel - Requirements and test methods (2017). https://standards.cen.eu/dyn/www/f?p=204:110:0::::FSP_PROJECT,FSP_ORG_ID:64612,6003&cs=1002EF349397DF1DD4B165A4BA1679FE0
  33. 33.
    Agarwal, A.K., Bijwe, J., Das, L.M.: Wear assessment in a biodiesel fueled compression ignition engine. J. Eng. Gas Turbines Power 125, 820 (2003)CrossRefGoogle Scholar
  34. 34.
    Peng, D.-X.: Tribological performance of various types of biodiesel. Mater. Trans. 56, 1953–1959 (2015)CrossRefGoogle Scholar
  35. 35.
    Rahman, M., Rasul, M., Hassan, N.: Study on the tribological characteristics of australian native first generation and second generation biodiesel fuel. Energies 10, 55 (2017)CrossRefGoogle Scholar
  36. 36.
    Xu, Y., Hu, X., Yuan, K., Zhu, G., Wang, W.: Friction and wear behaviors of catalytic methylesterified bio-oil. Tribol. Int. 71, 168–174 (2014)CrossRefGoogle Scholar
  37. 37.
    Fazal, M.A., Haseeb, A.S.M.A., Masjuki, H.H.: Investigation of friction and wear characteristics of palm biodiesel. Energy Convers. Manag. 67, 251–256 (2013)CrossRefGoogle Scholar
  38. 38.
    Corkwell, K.C., Jackson, M.M.: Lubricity and Injector Pump Wear Issues with E diesel Fuel Blends. Presented at the 21 October 2002Google Scholar
  39. 39.
    Haseeb, A.S.M.A., Fazal, M.A., Jahirul, M.I., Masjuki, H.H.: Compatibility of automotive materials in biodiesel: a review. Fuel 90, 922–931 (2011)CrossRefGoogle Scholar
  40. 40.
    Singh, B., Korstad, J., Sharma, Y.C.: A critical review on corrosion of compression ignition (CI) engine parts by biodiesel and biodiesel blends and its inhibition. Renew. Sustain. Energy Rev. 16, 3401–3408 (2012)CrossRefGoogle Scholar
  41. 41.
    Sorate, K.A., Bhale, P.V.: Biodiesel properties and automotive system compatibility issues. Renew. Sustain. Energy Rev. 41, 777–798 (2015)CrossRefGoogle Scholar
  42. 42.
    Agarwal, A.K., Bijwe, J., Das, L.M.: Effect of biodiesel utilization of wear of vital parts in compression ignition engine. J. Eng. Gas Turbines Power 125, 604 (2003)CrossRefGoogle Scholar
  43. 43.
    Hu, E., Xu, Y., Hu, X., Pan, L., Jiang, S.: Corrosion behaviors of metals in biodiesel from rapeseed oil and methanol. Renew. Energy. 37, 371–378 (2012)CrossRefGoogle Scholar
  44. 44.
    Cursaru, D.L., Brǎnoiu, G., Ramadan, I., Miculescu, F.: Degradation of automotive materials upon exposure to sunflower biodiesel. Ind. Crops Prod. 54, 149–158 (2014)CrossRefGoogle Scholar
  45. 45.
    Burger, J., Siegert, M., Ströfer, E., Hasse, H.: Poly(oxymethylene) dimethyl ethers as components of tailored diesel fuel: properties, synthesis and purification concepts. Fuel 89, 3315–3319 (2010)CrossRefGoogle Scholar
  46. 46.
    Lautenschütz, L., Oestreich, D., Seidenspinner, P., Arnold, U., Dinjus, E., Sauer, J.: Physico-chemical properties and fuel characteristics of oxymethylene dialkyl ethers. Fuel 173, 129–137 (2016)CrossRefGoogle Scholar
  47. 47.
    Hu, E., Hu, X., Wang, X., Xu, Y., Dearn, K.D., Xu, H.: On the fundamental lubricity of 2,5-dimethylfuran as a synthetic engine fuel. Tribol. Int. 55, 119–125 (2012)CrossRefGoogle Scholar
  48. 48.
    Sukjit, E., Poapongsakorn, P., Dearn, K.D., Lapuerta, M., Sánchez-Valdepeñas, J.: Investigation of the lubrication properties and tribological mechanisms of oxygenated compounds. Wear 376–377, 836–842 (2017)CrossRefGoogle Scholar
  49. 49.
    Lopreato, L.G.R., de Oliveira, E.J., Duarte, M.V.E.: Gasoline lubricity: an exploratory evaluation. In: 21st SAE Brasil International Congress and Exhibition, SAE International (2012)Google Scholar
  50. 50.
    Arkoudeas, P., Karonis, D., Zannikos, F., Lois, E.: Lubricity assessment of gasoline fuels. Fuel Process. Technol. 122, 107–119 (2014)CrossRefGoogle Scholar
  51. 51.
    Wei, D.P., Spikes, H.A., Korcek, S.: The lubricity of gasoline. Tribol. Trans. 42, 813–823 (1999)CrossRefGoogle Scholar
  52. 52.
    Oguma, M., Matsuno, M., Kaitsuka, M., Higurashi, K.: Evaluation of Hydrous Ethanol Fuel Lubricity by HFRR. Presented at the 17 October 2016Google Scholar
  53. 53.
    Dubois, T., Abiad, L., Caine, P.: Investigating the Impact of Ethanol on the Lubricity of Gasoline and on the Lubricity Improvers Efficiency. Presented at the (2017)Google Scholar
  54. 54.
    Gustavsson, F., Forsberg, P., Jacobson, S.: Friction and wear behaviour of low-friction coatings in conventional and alternative fuels. Tribol. Int. 48, 22–28 (2012)CrossRefGoogle Scholar
  55. 55.
    Rovai, F.F., Tanaka, D.K., Sinatora, A.: Wear and Corrosion Evaluation of Electric Fuel Pumps with Ethanol/Gasoline Blends. Presented at the 11 May 2005Google Scholar
  56. 56.
    Kurre, S.K., Garg, R., Pandey, S.: A review of biofuel generated contamination, engine oil degradation and engine wear. Biofuels 8, 273–280 (2017)CrossRefGoogle Scholar
  57. 57.
    Khuong, L.S., Zulkifli, N.W.M., Masjuki, H.H., Mohamad, E.N., Arslan, A., Mosarof, M.H., Azham, A.: A review on the effect of bioethanol dilution on the properties and performance of automotive lubricants in gasoline engines. RSC Adv. 6, 66847–66869 (2016)CrossRefGoogle Scholar
  58. 58.
    Costa, H.L., Spikes, H.: Effects of ethanol contamination on friction and elastohydrodynamic film thickness of engine oils. Tribol. Trans. 58, 158–168 (2015)CrossRefGoogle Scholar
  59. 59.
    Banerji, A., Lukitsch, M.J., Alpas, A.T.: Friction reduction mechanisms in cast iron sliding against DLC: effect of biofuel (E85) diluted engine oil. Wear 368–369, 196–209 (2016)CrossRefGoogle Scholar
  60. 60.
    Besser, C., Dörr, N., Novotny-Farkas, F., Varmuza, K., Allmaier, G.: Comparison of engine oil degradation observed in laboratory alteration and in the engine by chemometric data evaluation. Tribol. Int. 65, 37–47 (2013)CrossRefGoogle Scholar
  61. 61.
    Hakeem, M., Anderson, J., Surnilla, G., Yamada, S.S.: Characterization and speciation of fuel oil dilution in gasoline direct injection (DI) engines. In: Large Bore Engines; Fuels; Advanced Combustion, vol. 1, p. V001T02A006, ASME (2015)Google Scholar
  62. 62.
    Singh, P., Goel, V., Chauhan, S.R.: Impact of dual biofuel approach on engine oil dilution in CI engines (2017)CrossRefGoogle Scholar
  63. 63.
    Fang, H.L., Whitacre, S.D., Yamaguchi, E.S., Boons, M.: Biodiesel Impact on wear protection of engine oils. Presented at the 29 October 2007Google Scholar
  64. 64.
    Agarwal, A.K.: Experimental investigations of the effect of biodiesel utilization on lubricating oil tribology in diesel engines. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 219, 703–713 (2005)CrossRefGoogle Scholar
  65. 65.
    Andreae, M., Fang, H., Bhandary, K.: Biodiesel and Fuel Dilution of Engine Oil. Presented at the 29 October 2007Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • András Lajos Nagy
    • 1
  • Jan Knaup
    • 1
    • 2
  • Ibolya Zsoldos
    • 1
  1. 1.Széchenyi István UniversityGyőrHungary
  2. 2.Audi Hungaria KftGyőrHungary

Personalised recommendations