Transcription Factor-Based Genetic Engineering for Salinity Tolerance in Crops

  • Parinita Agarwal
  • Pradeep K. Agarwal
  • Divya Gohil


Salinity is one of the major environmental factors limiting productivity of all important crops. With an alarming increase of the world’s population, the sustainable agriculture produce is needed to feed the growing population. The decrease in agricultural land due to industrialization/urbanization and climate change poses a threat to agriculture. The genetic engineering of crops can serve as a promising technique and can significantly contribute to addressing food security and also add economic value to the world’s farming systems. The deployment of stress-responsive transcription factors for providing salinity tolerance to crops is an interesting area at the forefront of research. In the present chapter, we discuss the mechanism of regulation of important transcription factors, namely, dehydration-responsive element-binding factors, myeloblastosis oncogene, myelocytomatosis oncogene, NACs and WRKYs, and also provide an update of the transgenics developed and characterized using these TFs for enhanced salinity tolerance.


Abiotic stress DNA-binding domain Genetic engineering Ionic Osmotic Post-translational Promoters Reactive oxygen species Salinity stress Signalling Transcription factors Transgenics 



Abscisic acid


ABA-responsive element


Apetala2/ethylene-responsive factor CDPK


Basic leucine zipper


Calmodulin-binding domain


Cauliflower mosaic virus


Calcium-dependent protein kinase


Casein kinase 2


DNA-binding domain


Dehydration-responsive element


Dehydration-responsive element-binding factor


Early responsive to dehydration stress






Mitogen-activated protein kinase


Methyl jasmonate


Myeloblastosis oncogene


Myelocytomatosis oncogene


NAC recognition site


Protein kinase C


Protein phosphatase 2C


Reactive oxygen species


Salicylic acid


Transcription factor


Transcription regulatory domain



The authors acknowledge the financial support of the Department of Science and Technology and Council of Scientific and Industrial Research, New Delhi.


  1. Abe H, Yamaguchi-Shinozaki K, Urao T, Iwasaki T, Hosokawa D, Shinozaki K (1997) Role of Arabidopsis MYC and MYB homologs in drought- and abscisic acid-regulated gene expression. Plant Cell 9:1859–1868PubMedPubMedCentralGoogle Scholar
  2. Abe H, Urao T, Ito T, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell 15:63–78PubMedPubMedCentralCrossRefGoogle Scholar
  3. Agarwal PK, Agarwal P, Reddy MK, Sopory SK (2006) Role of DREB transcription factors in abiotic and biotic stress tolerance in plants. Plant Cell Rep 25:1263–1274PubMedCrossRefGoogle Scholar
  4. Agarwal P, Agarwal PK, Nair S, Sopory SK, Reddy MK (2007) Stress-inducible DREB2A transcription factor from Pennisetum glaucum is a phosphoprotein and its phosphorylation negatively regulates its DNA-binding activity. Mol Genet Genomics 277:189–198PubMedCrossRefGoogle Scholar
  5. Agarwal P, Agarwal PK, Joshi AJ, Reddy MK, Sopory SK (2010) Overexpression of PgDREB2A transcription factor enhances abiotic stress tolerance and activates downstream stress-responsive genes. Mol Biol Rep 37:1125–1135PubMedCrossRefGoogle Scholar
  6. Agarwal P, Dabi M, More P, Patel K, Jana K, Agarwal PK (2016) Improved shoot regeneration, salinity tolerance and reduced fungal susceptibility in transgenic tobacco constitutively expressing PR-10a gene. Front Plant Sci 7:217PubMedPubMedCentralGoogle Scholar
  7. Agarwal PK, Gupta K, Lopato S, Agarwal P (2017) Drought responsive element binding transcription factors and their applications for the engineering of stress tolerance. J Exp Bot 68:2135–2148PubMedCrossRefGoogle Scholar
  8. Alonso JM, Ecker JR (2006) Moving forward in reverse: genetic technologies to enable genome-wide phenomic screens in Arabidopsis. Nat Rev Genet 7:524–536PubMedCrossRefGoogle Scholar
  9. Asai T, Tena G, Plotnikova J, Willmann MR, Chiu WL, Gomez-Gomez L et al (2002) MAP kinase signalling cascade in Arabidopsis innate immunity. Nature 415:977–983PubMedCrossRefGoogle Scholar
  10. Atkinson NJ, Urwin PE (2012) The interaction of plant biotic and abiotic stresses: from genes to the field. J Exp Bot 63:3523–3543PubMedCrossRefGoogle Scholar
  11. Baranwal VK, Negi N, Khurana P (2016) Genome-wide identification and structural, functional and evolutionary analysis of WRKY components of mulberry. Sci Rep 6:30794PubMedPubMedCentralCrossRefGoogle Scholar
  12. Bohnert HJ, Ayoubi P, Borchert C, Bressan RA, Burnap RL, Cushman JC, Cushman MA, Deyholos M, Fisher R, Galbraith DW, Hasegawa PM, Jenks M, Kawasaki S, Koiwa H, Kore-eda S, Lee B-H, Michalowski CB, Misawa E, Nomura M, Ozturk N, Postier B, Prade R, Song C-P, Tanaka Y, Wang H, Zhu JK (2001) A genomic approach towards salt stress tolerance. Plant Physiol Biochem 39:295–311CrossRefGoogle Scholar
  13. Bouaziz D, Pirrello J, Ben Amor H, Hammami A, Charfeddine M, Dhieb A, Bouzayen M, Gargouri-Bouzid R (2012) Ectopic expression of dehydration responsive element binding proteins (StDREB2) confers higher tolerance to salt stress in potato. Plant Physiol Biochem 60:98–108PubMedCrossRefGoogle Scholar
  14. Cai H, Tian S, Liu C, Dong H (2011) Identification of a MYB3R gene involved in drought, salt and cold stress in wheat (Triticum aestivum L.) Gene 485:146–152PubMedCrossRefGoogle Scholar
  15. Cao ZF, Li J, Chen F, Li YQ, Zhou HM, Liu Q (2001) Effect of two conserved amino-acid residues on DREB1A function. Biochemistry 66:623–627PubMedGoogle Scholar
  16. Cao Z, Zhang S, Wang R, Zhang R, Hao Y (2013) Genome wide analysis of the apple MYB transcription factor family allows the identification of MdoMYB121 gene conferring abiotic stress tolerance in plants. PLoS One 8:e69955PubMedPubMedCentralCrossRefGoogle Scholar
  17. Century K, Reuber TL, Ratcliffe OJ (2008) Regulating the regulators: the future prospects for transcription-factor based agricultural biotechnology products. Plant Physiol 147:20–29PubMedPubMedCentralCrossRefGoogle Scholar
  18. Chen YH, Wu XM, Ling HQ, Yang WC (2006) Transgenic expression of DwMYB2 impairs iron transport from root to shoot in Arabidopsis thaliana. Cell Res 16:830–840PubMedCrossRefGoogle Scholar
  19. Chen M, Wang QY, Cheng XG, Xu ZS, Li LC, Ye XG, Xia LQ, Ma YZ (2007) GmDREB2, a soybean DRE-binding transcription factor, conferred drought and high-salt tolerance in transgenic plants. Biochem Biophys Res Commun 353:299–305PubMedCrossRefGoogle Scholar
  20. Chen J, Xia X, Yin W (2009a) Expression profiling and functional characterization of a DREB2-type gene from Populus euphratica. Biochem Biophys Res Commun 378:483–487PubMedCrossRefGoogle Scholar
  21. Chen M, Xu Z, Xia L, Li L, Cheng X, Dong J, Wang Q, Ma Y (2009b) Cold-induced modulation and functional analyses of the DRE-binding transcription factor gene GmDREB3 in soybean (Glycine max L.) J Exp Bot 60:121–135PubMedCrossRefGoogle Scholar
  22. Chen X, Wang Y, Lv B, Li J, Luo L, Lu S, Zhang X, Ma H, Ming F (2013) The NAC family transcription factor OsNAP confers abiotic stress response through the ABA pathway. Plant Cell Physiol 55:604–619CrossRefGoogle Scholar
  23. Cheng Y, Zhou Y, Yang Y, Chi YJ, Zhou J, Chen JY, Wang F, Fan B, Shi K, Zhou YH, Yu JQ, Chen Z (2012) Structural and functional analysis of VQ motif-containing proteins in Arabidopsis as interacting proteins of WRKY transcription factors. Plant Physiol 159:810–825PubMedPubMedCentralCrossRefGoogle Scholar
  24. Cheng L, Li X, Huang X, Ma T, Liang Y, Ma X, Peng X, Jia J, Chen S, Chen Y, Deng B, Liu G (2013) Overexpression of sheep grass R1-MYB transcription factor LcMYB1 confers salt tolerance in transgenic Arabidopsis. Plant Physiol Biochem 70:252–260PubMedCrossRefGoogle Scholar
  25. Chi Y, Yang Y, Zhou Y, Zhou J, Fan B, Yu JQ, Chen Z (2013) Protein-protein interactions in the regulation of WRKY transcription factors. Mol Plant 6:287–300PubMedCrossRefGoogle Scholar
  26. Chu X, Wang C, Chen X, Lu W, Li H, Wang X et al (2015) The cotton WRKY gene GhWRKY41 positively regulates salt and drought stress tolerance in transgenic Nicotiana benthamiana. PLoS One 10:e0143022PubMedPubMedCentralCrossRefGoogle Scholar
  27. Ciolkowski I, Wanke D, Birkenbihl RP, Somssich IE (2008) Studies on DNA-binding selectivity of WRKY transcription factors lend structural clues into WRKY-domain function. Plant Mol Biol 68:81–92PubMedPubMedCentralCrossRefGoogle Scholar
  28. Cui M, Zhang W, Zhang Q, Xu Z, Zhu Z, Duan F, Wu R (2011) Induced overexpression of the transcription factor OsDREB2A improves drought tolerance in rice. Plant Physiol Biochem 49:1384–1391PubMedCrossRefGoogle Scholar
  29. Cui MH, Yoo KS, Hyoung S, Nguyen HTK, Kim YY, Kim HJ, Ok SH, Yoo SD, Shin JS (2013) An Arabidopsis R2R3-MYB transcription factor, AtMYB20, negatively regulates type 2C serine/threonine protein phosphatases to enhance salt tolerance. FEBS 587:1773–1778CrossRefGoogle Scholar
  30. Dai X, Xu Y, Ma Q, Xu W, Wang T, Xue Y, Chong K (2007) Overexpression of an R1R2R3 MYB gene OsMYB3R-2 increases tolerance to freezing, drought, and salt stress in transgenic Arabidopsis. Plant Physiol 143:1739–1751PubMedPubMedCentralCrossRefGoogle Scholar
  31. De Pater S, Greco V, Pham K, Memelink J, Kijne J (1996) Characterization of a zinc-dependent transcriptional activator from Arabidopsis. Nucleic Acids Res 24:4624–4631PubMedPubMedCentralCrossRefGoogle Scholar
  32. Ding Z, Li S, An X, Liu X, Qin H, Wang D (2009) Transgenic expression of MYB15 confers enhanced sensitivity to abscisic acid and improved drought tolerance in Arabidopsis thaliana. J Gen Genomics 36:17–29CrossRefGoogle Scholar
  33. Distelfeld A, Pearce SP, Avni R, Scherer B, Uauy C, Piston F, Slade A, Zhao R, Dubcovsky J (2012) Divergent functions of orthologous NAC transcription factors in wheat and rice. Plant Mol Biol 78:515–524PubMedPubMedCentralCrossRefGoogle Scholar
  34. Du N, Liu X, Li Y, Chen S, Zhang J, Ha D, Deng W, Sun C, Zhang Y, Pijut PM (2012a) Genetic transformation of Populus tomentosa to improve salt tolerance. Plant Cell Tiss Org Cult 108:181–189CrossRefGoogle Scholar
  35. Du H, Yang SS, Liang Z, Feng BR, Liu L, Huang YB, Tang YX (2012b) Genome-wide analysis of the MYB transcription factor superfamily in soybean. BMC Plant Biol 12:106PubMedPubMedCentralCrossRefGoogle Scholar
  36. Dubos C, Stracke R, Grotewold E, Weisshaar B, Martin C, Lepiniec L (2010) MYB transcription factors in Arabidopsis. Trends Plant Sci 15:573–581PubMedCrossRefGoogle Scholar
  37. Dubouzet JG, Sakuma Y, Ito Y, Kasuga M, Dubouzet EG, Miura S, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) OsDREB genes in rice Oryza sativa L. encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression. Plant J 33:751–763PubMedCrossRefGoogle Scholar
  38. Duval I, Lachance D, Giguère I, Bomal C, Morency MJ, Pelletier G, Boyle B, MacKay JJ, Séguin A (2014) Large-scale screening of transcription factor-promoter interactions in spruce reveals a transcription. J Exp Bot 65:2319–2333PubMedPubMedCentralCrossRefGoogle Scholar
  39. Egawa C, Kobayashi F, Ishibashi M, Nakamura T, Nakamura C, Takumi S (2006) Differential regulation of transcript accumulation and alternative splicing of a DREB2 homolog under abiotic stress conditions in common wheat. Genes Genet Syst 81:77–91PubMedCrossRefGoogle Scholar
  40. Eulgem T, Rushton PJ, Schmelzer E, Hahlbrock K, Somssich IE (1999) Early nuclear events in plant defence signalling: rapid gene activation by WRKY transcription factors. EMBO J 18:4689–4699PubMedPubMedCentralCrossRefGoogle Scholar
  41. Fang L, Su L, Sun X, Li X, Sun M, Karungo SK, Fang S, Chu J, Li S, Xin H (2016) Expression of Vitis amurensis NAC26 in Arabidopsis enhances drought tolerance by modulating jasmonic acid synthesis. J Exp Bot 67:2829–2845PubMedPubMedCentralCrossRefGoogle Scholar
  42. FAO (Food and Agriculture Organization of United Nations) (2014)
  43. Feller A, Machemer K, Braun EL, Grotewold E (2011) Evolutionary and comparative analysis of MYB and bHLH plant transcription factors. Plant J 66:94–116PubMedCrossRefGoogle Scholar
  44. Fraire-Velázquez S, Rodríguez-Guerra R, Sánchez-Calderón L (2011) Abiotic and biotic stress response crosstalk in plants. In: Shanker A, Venkateswarlu B (eds) Abiotic stress response in plants: physiological, biochemical and genetic perspectives. Intech, Rijeka, pp 3–26Google Scholar
  45. Fujita M, Fujita Y, Maruyama K, Seki M, Hiratsu K, Ohme-Takagi M, Tran LS, Yamaguchi-Shinozaki K, Shinozaki K (2004) A dehydration-induced NAC protein, RD26, is involved in a novel ABA-dependent stress-signaling pathway. Plant J 39:863–876PubMedCrossRefGoogle Scholar
  46. Fujita M, Fujita Y, Noutoshi Y, Takahashi F, Narusaka Y, Yamaguchi-Shinozaki K, Shinozaki K (2006) Crosstalk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks. Curr Opin Plant Biol 9:436–442PubMedCrossRefGoogle Scholar
  47. Ganesan G, Sankararamasubramanian HM, Harikrishnan M, Ganpudi A, Parida A (2012) A MYB transcription factor from the grey mangrove is induced by stress and confers NaCl tolerance in tobacco. J Exp Bot 63:4549–4561PubMedCrossRefGoogle Scholar
  48. Gu YQ, Yang C, Thara VK, Zhou J, Martin GB (2000) Pti4 is induced by ethylene and salicylic acid, and its product is phosphorylated by the Pto kinase. Plant Cell 12:771–785PubMedPubMedCentralCrossRefGoogle Scholar
  49. Gunapati S, Naresh R, Ranjan S, Nigam D, Hans A, Verma PC, Gadre R, Pathre UV, Sane AP, Sane VA (2016) Expression of GhNAC2 from G. herbaceum, improves root growth and imparts tolerance to drought in transgenic cotton and Arabidopsis. Sci Rep 6:24978PubMedPubMedCentralCrossRefGoogle Scholar
  50. Gupta K, Jha B, Agarwal PK (2014) A dehydration-responsive element binding (DREB) transcription factor from the succulent halophyte Salicornia brachiata enhances abiotic stress tolerance in transgenic tobacco. Mar Biotechnol 16:657–667PubMedCrossRefGoogle Scholar
  51. Haga N, Kato K, Murase M, Araki S, Kubo M, Demura T, Suzuki K, Müller I, Voss U, Jürgens G, Ito M (2007) R1R2R3-Myb proteins positively regulate cytokinesis through activation of KNOLLE transcription in Arabidopsis thaliana. Development 134:1101–1110PubMedCrossRefGoogle Scholar
  52. Hao YJ, Wei W, Song QX, Chen HW, Zhang YQ, Wang F, Zou HF, Lei G, Tian AG, Zhang WK, Ma B, Zhang JS, Chen SY (2011) Soybean NAC transcription factors promote abiotic stress tolerance and lateral root formation in transgenic plants. Plant J 68:302–313PubMedCrossRefGoogle Scholar
  53. He XJ, Mu RL, Cao WH, Zhang ZG, Zhang JS, Chen SY (2005) AtNAC2, a transcription factor downstream of ethylene and auxin signaling pathways, is involved in salt stress response and lateral root development. Plant J 44:903–916PubMedCrossRefGoogle Scholar
  54. He Y, Li W, Lv J, Jia Y, Wang M, Xia G (2012) Ectopic expression of a wheat MYB transcription factor gene TaMYB73 improves salinity stress tolerance in Arabidopsis thaliana. J Exp Bot 63:1511–1522PubMedCrossRefGoogle Scholar
  55. He X, Zhu L, Xu L, Guo W, Zhang X (2016) GhATAF1, a NAC transcription factor, confers abiotic and biotic stress responses by regulating phytohormonal signaling networks. Plant Cell Rep 35:2167–2179PubMedCrossRefGoogle Scholar
  56. Hénanff GL, Profizi C, Courteaux B, Rabenoelina F, Gérard C, Clément C, Baillieul F, Cordelier S, Dhondt-Cordelier S (2013) Grapevine NAC1 transcription factor as a convergent node in developmental processes, abiotic stresses, and necrotrophic/biotrophic pathogen tolerance. J Exp Bot 64:4877–4893PubMedCrossRefGoogle Scholar
  57. Hichri I, Muhovski Y, Clippe A, Žižková E, Dobrev PI, Motyka V, Lutts S (2016) SlDREB2 a tomato dehydration-responsive element-binding 2 transcription factor mediates salt stress tolerance in tomato and Arabidopsis. Plant Cell Environ 39:62–79PubMedCrossRefGoogle Scholar
  58. Hong Y, Zhang H, Huang L, Liand D, Song F (2016) Overexpression of stress-responsive NAC transcription factor gene ONAC022 improves drought and salt tolerance in rice. Front Plant Sci 7:4PubMedPubMedCentralCrossRefGoogle Scholar
  59. Hu H, Dai M, Yao J, Xiao B, Li X, Zhang Q, Xiong L (2006) Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proc Natl Acad Sci U S A 103:12987–12992PubMedPubMedCentralCrossRefGoogle Scholar
  60. Hu H, You J, Fang Y, Zhu X, Qi Z, Xiong L (2008) Characterization of transcription factor gene SNAC2 conferring cold and salt tolerance in rice. Plant Mol Biol 67:169–181PubMedCrossRefGoogle Scholar
  61. Hu R, Qi G, Kong Y, Kong D, Gao Q, Zhou G (2010) Comprehensive analysis of NAC domain transcription factor gene family in Populus trichocarpa. BMC Plant Biol 10:145PubMedPubMedCentralCrossRefGoogle Scholar
  62. Huang Q, Wang Y, Li B, Chang J, Chen M, Li K, Yang G, He G (2015) TaNAC29, a NAC transcription factor from wheat, enhances salt and drought tolerance in transgenic Arabidopsis. BMC Plant Biol 15:268PubMedPubMedCentralCrossRefGoogle Scholar
  63. Ishiguro S, Nakamura K (1994) Characterization of a cDNA encoding a novel DNA-binding protein, SPF1, that recognizes SP8 sequences in the 50 upstream regions of genes coding for sporamin and b-amylase from sweet potato. Mol Gen Genet 244:563–571PubMedCrossRefGoogle Scholar
  64. Ito M (2005) Conservation and diversification of three repeat Myb transcription factors in plants. J Plant Res 118:61–69PubMedCrossRefGoogle Scholar
  65. James VA, Neibaur I, Altpeter F (2008) Stress inducible expression of the DREB1A transcription factor from xeric, Hordeum spontaneum L. in turf and forage grass (Paspalum notatum Flugge) enhances abiotic stress tolerance. Transgenic Res 17:93–104PubMedCrossRefGoogle Scholar
  66. Jensen MK, Kjaersgaard T, Nielsen MM, Galberg P, Petersen K, O’Shea C, Skriver K (2010) The Arabidopsis thaliana NAC transcription factor family: structure-function relationships and determinants of ANAC019 stress signalling. Biochem J 426:183–196PubMedCrossRefGoogle Scholar
  67. Jeong JS, Kim YS, Baek KH, Jung H, Ha SH, Choi YD, Kim M, Reuzeau C, Kim JK (2010) Root-specific expression of OsNAC10 improves drought tolerance and grain yield in rice under field drought conditions. Plant Physiol 153:185–197PubMedPubMedCentralCrossRefGoogle Scholar
  68. Jia L, Clegg MT, Jiang T (2004) Evolutionary dynamics of the DNA-binding domains in putative R2R3-MYB genes identified from rice subspecies indica and japonica genomes. Plant Physiol 134:575–585PubMedPubMedCentralCrossRefGoogle Scholar
  69. Jia H, Wang C, Wang F, Liu S, Li G, Guo X (2015) GhWRKY68 reduces resistance to salt and drought in transgenic Nicotiana benthamiana. PLoS One 10:e0120646PubMedPubMedCentralCrossRefGoogle Scholar
  70. Jiang Y, Deyholos MK (2006) Comprehensive transcriptional profiling of NaCl-stressed Arabidopsis roots reveals novel classes of responsive genes. BMC Plant Biol 6:25PubMedPubMedCentralCrossRefGoogle Scholar
  71. Jiang Y, Deyholos MK (2009) Functional characterization of Arabidopsis NaCl-inducible WRKY25 and WRKY33 transcription factors in abiotic stresses. Plant Mol Biol 69:91–105PubMedCrossRefGoogle Scholar
  72. Jin T, Chang Q, Li W, Yin D, Li Z, Wang D, Liu B, Liu L (2010) Stress-inducible expression of GmDREB1conferred salt tolerance in transgenic alfalfa. Plant Cell Tiss Org Cult 100:219–227CrossRefGoogle Scholar
  73. Jung C, Seo JS, Han SW, Koo YJ, Kim CH, Song SI, Nahm BH, Choi YD, Cheong JJ (2008) Overexpression of AtMYB44 enhances stomatal closure to confer abiotic stress tolerance in transgenic Arabidopsis. Plant Physiol 146:623–635PubMedPubMedCentralCrossRefGoogle Scholar
  74. Kalde M, Barth M, Somssich IE, Lippok B (2003) Members of the Arabidopsis WRKY group III transcription factors are part of different plant defence signalling pathways. Mol Plant-Microbe Interact 16:295–305PubMedCrossRefGoogle Scholar
  75. Kaneda T, Taga Y, Takai R, Iwano M, Matsui H, Takayama S, Isogai A, Che FS (2009) The transcription factor OsNAC4 is a key positive regulator of plant hypersensitive cell death. EMBO J 4:740–742Google Scholar
  76. Katiyar A, Smita S, Lenka SK, Rajwanshi R, Chinnusamy V, Bansal KC (2012) Genome wide classification and expression analysis of MYB transcription factor families in rice and Arabidopsis. BMC Genomics 13:544PubMedPubMedCentralCrossRefGoogle Scholar
  77. Kidokoro S, Maruyama K, Nakashima K, Imura Y, Narusaka Y, Shinwari ZK, Osakabe Y, Fujita Y, Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K (2009) The phytochrome-interacting factor PIF7 negatively regulates DREB1 expression under circadian control in Arabidopsis. Plant Physiol 151:2046–2057PubMedPubMedCentralCrossRefGoogle Scholar
  78. Kleinow T, Himbert S, Krenz H, Jeske H, Koncz C (2009) NAC domain transcription factor ATAF1 interacts with SNF1-related kinases and silencing of its subfamily causes severe developmental defects in Arabidopsis. Plant Sci 177:360–370CrossRefGoogle Scholar
  79. Le DT, Nishiyama R, Watanabe Y, Mochida K, Yamaguchi-Shinozaki K, Shinozaki K, Tran LS (2011) Genome-wide survey and expression analysis of the plant-specific NAC transcription factor family in soybean during development and dehydration stress. DNA Res 18:263–276PubMedPubMedCentralCrossRefGoogle Scholar
  80. Li D, Zhang Y, Hu X, Shen X, Ma L, Su Z, Wang T, Dong J (2011) Transcriptional profiling of Medicago truncatula under salt stress identified a novel CBF transcription factor MtCBF4 that plays an important role in abiotic stress responses. BMC Plant Biol 11:109PubMedPubMedCentralCrossRefGoogle Scholar
  81. Li M, Li Y, Li H, Wu G (2012) Improvement of paper mulberry tolerance to abiotic stresses by ectopic expression of tall fescue FaDREB1. Tree Physiol 32:104–113PubMedCrossRefGoogle Scholar
  82. Li C, Ng CKY, Fan LM (2014a) MYB transcription factors active players in abiotic stress signaling. Environ Exp Bot 114:80–91CrossRefGoogle Scholar
  83. Li X, Zhang D, Li H, Wang Y, Zhang Y, Wood AJ (2014b) EsDREB2B a novel truncated DREB2-type transcription factor in the desert legume Eremosparton songoricum, enhances tolerance to multiple abiotic stresses in yeast and transgenic tobacco. BMC Plant Biol 14:44PubMedPubMedCentralCrossRefGoogle Scholar
  84. Li JB, Luan YS, Liu Z (2015) Overexpression of SpWRKY1 promotes resistance to Phytophthora nicotianae and tolerance to salt and drought stress in transgenic tobacco. Physiol Plant 155:248–266PubMedCrossRefGoogle Scholar
  85. Liao Y, Zou HF, Wang HW, Zhang WK, Ma B, Zhang JS, Chen SY (2008) Soybean GmMYB76, GmMYB92, and GmMYB177 genes confer stress tolerance in transgenic Arabidopsis plants. Cell Res 18:1047–1060PubMedCrossRefGoogle Scholar
  86. Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1998) Two transcription factors DREB1 and DREB2 with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low temperature-responsive gene expression respectively in Arabidopsis. Plant Cell 10:1391–1406PubMedPubMedCentralCrossRefGoogle Scholar
  87. Liu Y, Schiff M, Dinesh-Kumar SP (2004) Involvement of MEK1, MAPKK, NTF6, MAPK, WRKY/MYB transcription factors, COI1 and CTR1 in N-mediated resistance to tobacco mosaic virus. Plant J 38:800–809PubMedCrossRefGoogle Scholar
  88. Liu N, Zhong NQ, Wang GL, Li LJ, Liu XL, He YK (2007) Cloning and functional characterization of PpDBF1 gene encoding a DRE-binding transcription factor from Physcomitrella patens. Planta 226:827–838PubMedCrossRefGoogle Scholar
  89. Liu H, Zhou X, Dong N, Liu X, Zhang H, Zhang Z (2011a) Expression of a wheat MYB gene in transgenic tobacco enhances resistance to Ralstonia solanacearum, and to drought and salt stresses. Funct Integr Genomics 11:431–443PubMedCrossRefGoogle Scholar
  90. Liu X, Hong L, Li XY, Yao Y, Hu B, Li L (2011b) Improved drought and salt tolerance in transgenic Arabidopsis overexpressing a NAC transcriptional factor from Arachis hypogaea. Biosci Biotechnol Biochem 75:443–450PubMedCrossRefGoogle Scholar
  91. Liu Q, Zhong M, Li S, Pan Y, Jiang B, Jia Y, Zhang H (2013) Overexpression of a chrysanthemum transcription factor gene, DgWRKY3, in tobacco enhances tolerance to salt stress. Plant Physiol Biochem 69:27–33PubMedCrossRefGoogle Scholar
  92. Liu X, Song Y, Xing F, Wang N, Wen F, Zhu C (2016a) GhWRKY25, a group I WRKY gene from cotton, confers differential tolerance to abiotic and biotic stresses in transgenic Nicotiana benthamiana. Protoplasma 253:1265–1281PubMedCrossRefGoogle Scholar
  93. Liu Y, Sun J, Wu Y (2016b) Arabidopsis ATAF1 enhances the tolerance to salt stress and ABA in transgenic rice. J Plant Res 129:955–962PubMedCrossRefGoogle Scholar
  94. Mackay JP, Crossley M (1998) Zinc fingers are sticking together. Trends Biochem Sci 23:1–4PubMedCrossRefGoogle Scholar
  95. Mangelsen E, Kilian J, Berendzen KW, Kolukisaoglu ÜH, Harter K, Jansson C, Wanke D (2008) Phylogenetic and comparative gene expression analysis of barley (Hordeum vulgare) WRKY transcription factor family reveals putatively retained functions between monocots and dicots. BMC Genomics 9:194PubMedPubMedCentralCrossRefGoogle Scholar
  96. Mao X, Jia D, Li A, Zhang H, Tian S, Zhang X, Jia J, Jing R (2011a) Transgenic expression of TaMYB2A confers enhanced tolerance to multiple abiotic stresses in Arabidopsis. Funct Integr Genomics 11:445–465PubMedCrossRefGoogle Scholar
  97. Mao X, Zhang H, Qian X, Li A, Zhao G, Jing R (2011b) TaNAC2, a NAC-type wheat transcription factor conferring enhanced multiple abiotic stress tolerances in Arabidopsis. J Exp Bot 63:2933–2946CrossRefGoogle Scholar
  98. Mao X, Chen S, Li A, Zhai C, Jing R (2014) Novel NAC transcription factor TaNAC67 confers enhanced multi-abiotic stress tolerances in Arabidopsis. PLoS One 9:e84359PubMedPubMedCentralCrossRefGoogle Scholar
  99. Matsukura S, Mizoi J, Yoshida T, Todaka D, Ito Y, Maruyama K, Shinozaki K, Yamaguchi-Shinozaki K (2010) Comprehensive analysis of rice DREB2 type genes that encode transcription factors involved in the expression of abiotic stress- responsive genes. Mol Genet Genomics 283:185–196PubMedCrossRefGoogle Scholar
  100. Mengiste T, Chen X, Salmeron J, Dietrich R (2003) The BOTRYTIS SUSCEPTIBLE1 gene encodes an R2R3MYB transcription factor protein that is required for biotic and abiotic stress responses in Arabidopsis. Plant Cell 15:2551–2565PubMedPubMedCentralCrossRefGoogle Scholar
  101. Miao M, Niu X, Kud J, Du X, Avila J, Devarenne TP, Kuhl JC, Liu Y, Xiao F (2016) The ubiquitin ligase SEVEN IN ABSENTIA (SINA) ubiquitinates a defense-related NAC transcription factor and is involved in defense signaling. New Phytol 211:138–148PubMedCrossRefGoogle Scholar
  102. Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681PubMedCrossRefGoogle Scholar
  103. Nagaoka S, Takano T (2003) Salt tolerance related protein STO binds to a Myb transcription factor homologue and confers salt tolerance in Arabidopsis. J Exp Bot 54:2231–2237PubMedCrossRefGoogle Scholar
  104. Nakashima K, Tran LS, Van Nguyen D, Fujita M, Maruyama K, Todaka D, Ito Y, Hayashi N, Shinozaki K, Yamaguchi-Shinozaki K (2007) Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice. Plant J 51:617–630PubMedCrossRefGoogle Scholar
  105. Nakashima K, Takasaki H, Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K (2012) NAC transcription factors in plant abiotic stress responses. Biochim Biophys Acta 1819:97–103PubMedCrossRefGoogle Scholar
  106. Niu CF, Wei W, Zhou QY, Tian AG, Hao YJ, Zhang WK, Ma B, Lin Q, Zhang ZB, Zhang JS, Chen SY (2012) Wheat WRKY genes TaWRKY2 and TaWRKY19 regulate abiotic stress tolerance in transgenic Arabidopsis plants. Plant Cell Environ 35:1156–1170PubMedCrossRefGoogle Scholar
  107. Nuruzzaman M, Manimekalai R, Sharoni AM, Satoh K, Kondoh H, Ooka H, Kikuchi S (2010) Genome-wide analysis of NAC transcription factor family in rice. Gene 465:30–44PubMedCrossRefGoogle Scholar
  108. Ogata K, Kanei-Ishii C, Sasaki M, Hatanaka H, Nagadoi A, Enari M, Nakamura H, Nishimura Y, Ishii S, Sarai A (1996) The cavity in the hydrophobic core of Myb DNA-binding domain is reserved for DNA recognition and trans-activation. Nat Struct Biol 3:178–187PubMedCrossRefGoogle Scholar
  109. Oh SJ, Song SI, Kim YS, Jang HJ, Kim SY, Kim M, Kim YK, Nahm BH, Kim JK (2005) Arabidopsis CBF3/DREB1A and ABF3 in transgenic rice increased tolerance to abiotic stress without stunting growth. Plant Physiol 138:341–351PubMedPubMedCentralCrossRefGoogle Scholar
  110. Oh SJ, Kwon CW, Choi DW, Song SI, Kim JK (2007) Expression of barley HvCBF4 enhances tolerance to abiotic stress in transgenic rice. Plant Biotechnol J 5:646–656PubMedCrossRefGoogle Scholar
  111. Ohnishi T, Sugahara S, Yamada T, Kikuchi K, Yoshiba Y, Hirano HY, Tsutsumi N (2005) OsNAC6, a member of the NAC gene family, is induced by various stresses in rice. Genes Genet Syst 80:135–139PubMedCrossRefGoogle Scholar
  112. Olsen AN, Ernst HA, Leggio LL, Skriver K (2005) DNA-binding specificity and molecular functions of NAC transcription factors. Plant Sci 169:785–797CrossRefGoogle Scholar
  113. Ooka H, Ooka H, Satoh K, Nagata T, Otomo Y, Murakami K, Matsubara K, Osato N, Kawai J, Carninci P, Hayashizaki Y, Suzuki K, Kojima K, Takahara Y, Yamamoto K, Kikuchi S (2003) Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana. DNA Res 247:239–247CrossRefGoogle Scholar
  114. Orbay H, Ahmad R (2012) Physiological and biochemical changes of CBF3 transgenic oat in response to salinity stress. Plant Sci 185:331–339CrossRefGoogle Scholar
  115. Pandey SP, Somssich IE (2009) The role of WRKY transcription factors in plant immunity. Plant Physiol 150:1648–1655PubMedPubMedCentralCrossRefGoogle Scholar
  116. Park CY, Lee JH, Yoo JH, Moon BC, Choi MS, Kang YH, Lee SM, Kim HS, Kang KY, Chung WS, Lim CO, Cho MJ (2005) WRKY group II d transcription factors interact with calmodulin. FEBS Lett 579:1545–1550PubMedCrossRefGoogle Scholar
  117. Pascual MB, Cánovas FM, Ávila C (2015) The NAC transcription factor family in maritime pine (Pinus Pinaster): molecular regulation of two genes involved in stress responses. BMC Plant Biol 15:254PubMedPubMedCentralCrossRefGoogle Scholar
  118. Pastori GM, Foyer CH (2002) Common components, networks and pathways of cross-tolerance to stress. The central role of ‘redox’ and abscisic-acid-mediated controls. Plant Physiol 129:460–468PubMedPubMedCentralCrossRefGoogle Scholar
  119. Paz-Ares J, Ghosal D, Wlenand U, Peterson PA, Saedler H (1987) The regulatory c7 locus of Zea mays encodes a protein with homology to myb proto-oncogene products and with structural similarities to transcriptional activators. EMBO J 6:3553–3558PubMedPubMedCentralGoogle Scholar
  120. Puranik S, Sahu PP, Srivastava PS, Prasad M (2012) NAC proteins: regulation and role in stress tolerance. Trends Plant Sci 17:369–381PubMedCrossRefGoogle Scholar
  121. Qin F, Kakimoto M, Sakuma Y, Maruyama K, Osakabe Y, Tran LS, Shinozaki K, Yamaguchi-Shinozaki K (2007) Regulation and functional analysis of ZmDREB2A in response to drought and heat stresses in Zea mays L. Plant J 50:54–69PubMedCrossRefGoogle Scholar
  122. Qin F, Sakuma Y, Tran LS, Maruyama K, Kidokoro S, Fujita Y, Umezawa T, Sawano Y, Miyazono K, Tanokura M, Shinozaki K, Yamaguchi-Shinozaki K (2008) Arabidopsis DREB2A-interacting proteins function as RING E3 ligases and negatively regulate plant drought stress-responsive gene expression. Plant Cell 20:1693–1707PubMedPubMedCentralCrossRefGoogle Scholar
  123. Qin Y, Wang M, Tian Y, He W, Han L, Xia G (2012) Over-expression of TaMYB33 encoding a novel wheat MYB transcription factor increases salt and drought tolerance in Arabidopsis. Mol Biol Rep 39:7183–7719PubMedCrossRefGoogle Scholar
  124. Qiu Y, Yu D (2009) Over-expression of the stress-induced OsWRKY45 enhances disease resistance and drought tolerance in Arabidopsis. Environ Exp Bot 65:35–47CrossRefGoogle Scholar
  125. Rahman H, Ramanathan V, Nallathambi J, Duraialagaraja S, Muthurajan R (2016) Over-expression of a NAC 67 transcription factor from finger millet (Eleusine coracana L.) confers tolerance against salinity and drought stress in rice. BMC Biotechnol 16:35PubMedPubMedCentralCrossRefGoogle Scholar
  126. Ramegowda V, Kumar MS, Nataraja KN, Reddy MK, Mysore KS, Udayakumar M (2012) Expression of a finger millet transcription factor, EcNAC1, in tobacco confers abiotic stress-tolerance. PLoS One 7:e40397PubMedPubMedCentralCrossRefGoogle Scholar
  127. Riechmann JL (2000) Arabidopsis transcription factors genome wide comparative analysis among eukaryotes. Science 290:2105–2110PubMedCrossRefGoogle Scholar
  128. Riechmann JL, Ratcliffe OJ (2000) A genomic perspective on plant transcription factors. Curr Opin Plant Biol 3:423–434PubMedCrossRefGoogle Scholar
  129. Rogers S, Wells R, Rechsteiner M (1986) Amino acid sequences common to rapidly degraded proteins: the PEST hypothesis. Science 234:364–368PubMedCrossRefGoogle Scholar
  130. Romero I, Fuertes A, Benito MJ, Malpica JM, Leyva A, Paz Ares J (1998) More than 80R2R3-MYB regulatory genes in the genome of Arabidopsis thaliana. Plant J 14:273–284PubMedCrossRefGoogle Scholar
  131. Rushton PJ, Bokowiec MT, Han S, Zhang H, Brannock JF, Chen X, Laudeman TW, Timko MP (2008) Tobacco transcription factors: novel insights into transcriptional regulation in the Solanaceae. Plant Physiol 147:280–295PubMedPubMedCentralCrossRefGoogle Scholar
  132. Rushton PJ, Somssich IE, Ringler P, Shen QJ (2010) WRKY transcription factors. Trends Plant Sci 15:247–258PubMedCrossRefGoogle Scholar
  133. Saad ASI, Li X, Li HP, Huang T, Gao CS, Guo MW, Cheng W, Zhao GY, Liao YC (2013) A rice stress-responsive NAC gene enhances tolerance of transgenic wheat to drought and salt stresses. Plant Sci 35:1783–1798Google Scholar
  134. Sakuma Y, Liu Q, Dubouzet JG, Abe H, Shinozaki K, Yamaguchi-Shinozaki K (2002) DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs transcription factors involved in dehydration and cold inducible gene expression. Biochem Biophys Res Commun 290:998–1009PubMedCrossRefGoogle Scholar
  135. Sakuma Y, Maruyama K, Osakabe Y, Qin F, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2006) Functional analysis of an Arabidopsis transcription factor DREB2A involved in drought responsive gene expression. Plant Cell 18:1292–1309PubMedPubMedCentralCrossRefGoogle Scholar
  136. Schachtman DP, Liu WH (1999) Molecular pieces to the puzzle of the interaction between potassium and sodium uptake in plants. Trends Plant Sci 4:281–287PubMedCrossRefGoogle Scholar
  137. Schmidt R, Schippers JHM, Mieulet D, Obata T, Fernie AR, Guiderdoni E, Mueller Roeber B (2013) MULTIPASS a rice R2R3-type MYB transcription factor regulates adaptive growth by integrating multiple hormonal pathways. Plant J 76:258–273PubMedGoogle Scholar
  138. Schmutz J, Cannon SB, Schlueter J, Ma J, Mitros T, Nelson W et al (2010) Genome sequence of the palaeopolyploid soybean. Nature 463:178–183PubMedCrossRefGoogle Scholar
  139. Seki M, Narusaka M, Abe H, Kasuga M, Yamaguchi-Shinozaki K, Carninci P, Hayashizaki Y, Shinozaki K (2001) Monitoring the expression pattern of 1300 Arabidopsis genes under drought and cold stresses by using a full-length cDNA microarray. Plant Cell 13:61–72PubMedPubMedCentralCrossRefGoogle Scholar
  140. Seki M, Narusaka M, Ishida J, Nanjo T, Fujita M, Oono Y, Kamiya A, Nakajima M, Enju A, Sakurai T, Satou M, Akiyama K, Taji T, Yamaguchi-Shinozaki K, Carninci P, Kawai J, Hayashizaki Y, Shinozaki K (2002) Monitoring expression profile of 7000 Arabidopsis genes under drought, cold-and high-salinity stresses using a full-length cDNA microarray. Plant J 31:279–292PubMedCrossRefGoogle Scholar
  141. Seo JS, Sohn HB, Noh K, Jung C, An JH, Donovan CM, Somers DA, Kim DI, Jeong SC, Kim CG, Kim HM, Lee SH, Choi YD, Moon TW, Kim CH, Cheong JJ (2012) Expression of the Arabidopsis AtMYB44 gene confers drought/salt-stress tolerance in transgenic soybean. Mol Breed 29:601–608CrossRefGoogle Scholar
  142. Shabala S, Cuin TA (2008) Potassium transport and plant salt tolerance. Physiol Plant 133:651–669PubMedCrossRefGoogle Scholar
  143. Shan H, Chen S, Jiang J, Chen F, Chen Y, Gu C, Li P, Song A, Zhu X, Gao H, Zhou G, Li T, Yang X (2012) Heterologous expression of the Chrysanthemum R2R3-MYB transcription factor CmMYB2 enhances drought and salinity tolerance, increases hypersensitivity to ABA and delays flowering in Arabidopsis thaliana. Mol Biotechnol 51:160–173PubMedCrossRefGoogle Scholar
  144. Shao HB, Chu LY, Zhao CX, Guo QJ, Liu XA, Ribaut JM (2006) Plant gene regulatory network system under abiotic stress. Acta Biol Szegediensis 50:1–9Google Scholar
  145. Shen H, Yin Y, Chen F, Xu Y, Dixon RA (2009) A bioinformatic analysis of NAC genes for plant cell wall development in relation to lignocellulosic bioenergy production. Bioenergy Res 2:217–223CrossRefGoogle Scholar
  146. Shinozaki K, Yamaguchi-Shinozaki K (2000) Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. Curr Opin Plant Biol 3:217–223PubMedCrossRefGoogle Scholar
  147. Shiu SH, Shih MC, Li WH (2005) Transcription factor families have much higher expansion rates in plants than in animals. Plant Physiol 139:18–26PubMedPubMedCentralCrossRefGoogle Scholar
  148. Souer E, Van Houwelingen A, Kloos D, Mol J, Koes R (1996) The no apical Meristem gene of petunia is required for pattern formation in embryos and flowers and is expressed at meristem and primordia boundaries. Cell 85:159–170PubMedCrossRefGoogle Scholar
  149. Sun J, Peng X, Fan W, Tang M, Liu J, Shen S (2014) Functional analysis of BpDREB2 gene involved in salt and drought response from a woody plant Broussonetia papyrifera. Gene 535:140–149PubMedCrossRefGoogle Scholar
  150. Tak H, Negi S, Ganapathi TR (2016) Banana NAC transcription factor MusaNAC042 is positively associated with drought and salinity tolerance. Protoplasma 254:803–816PubMedCrossRefGoogle Scholar
  151. Takasaki H, Maruyama K, Kidokoro S, Ito Y, Fujita Y, Shinozaki K, Yamaguchi-Shinozaki K, Nakashima K (2010) The abiotic stress-responsive NAC-type transcription factor OsNAC5 regulates stress-inducible genes and stress tolerance in rice. Mol Gen Genomics 284:173–183CrossRefGoogle Scholar
  152. Tran LP, Nakashima K, Sakuma Y, Simpson SD, Fujita Y, Maruyama K, Fujita M, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2004) Isolation and functional analysis of Arabidopsis Stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 Promoter. Plant Cell 16:2481–2498PubMedPubMedCentralCrossRefGoogle Scholar
  153. Tran LS, Nishiyama R, Yamaguchi-Shinozaki K, Shinozaki K (2010) Potential utilization of NAC transcription factors to enhance abiotic stress tolerance in plants by biotechnological approach. GM Crops 1, 32–39. 10.4161/gmcr.1.1.10569Google Scholar
  154. Ulker B, Somssich IE (2004) WRKY transcription factors from DNA binding towards biological function. Curr Opin Plant Biol 7:491–498PubMedCrossRefGoogle Scholar
  155. Vainonen JP, Jaspers P, Wrzaczek M, Lamminmaki A, Reddy RA, Vaahtera L, Brosche M, Kangasjarvi J (2012) RCD1-DREB2A interaction in leaf senescence and stress responses in Arabidopsis thaliana. Biochem J 442:573–581PubMedCrossRefGoogle Scholar
  156. Vanderauwera S, Vandenbroucke K, Inzé A, van de Cotte B, Mühlenbock P, De Rycke R, Naouar N, Van Gaever T, Van Montagu MC, Van Breusegem F (2012) AtWRKY15 perturbation abolishes the mitochondrial stress response that steers osmotic stress tolerance in Arabidopsis. Proc Natl Acad Sci U S A 109:20113–20118PubMedPubMedCentralCrossRefGoogle Scholar
  157. Vannini C, Locatelli F, Bracale M, Magnani E, Marsoni M, Osnato M, Mattana M, Baldoni E, Coraggio I (2004) Overexpression of the rice Osmyb4 gene increases chilling and freezing tolerance of Arabidopsis thaliana plants. Plant J 37:115–127PubMedCrossRefGoogle Scholar
  158. Vannini C, Iriti M, Bracale M, Locatelli F, Faoro F, Croce P, Pirona R, Di Maro A, Coraggio I, Genga A (2006) The ectopic expression of the rice Osmyb4 gene in Arabidopsis increases tolerance to abiotic, environmental and biotic stresses. Physiol Mol Plant Pathol 69:26–42CrossRefGoogle Scholar
  159. Wang Q, Guan Y, Wu Y, Chen H, Chen F, Chu C (2008) Overexpression of a rice OsDREB1F gene increases salt, drought, and low temperature tolerance in both Arabidopsis and rice. Plant Mol Biol 67:589–602PubMedCrossRefGoogle Scholar
  160. Wang X, Chen X, Liu Y, Gao H, Wang Z, Sun G (2011) CkDREB gene in Caragana korshinskii is involved in the regulation of stress response to multiple abiotic stresses as an AP2/EREBP transcription factor. Mol Biol Rep 38:2801–2811PubMedCrossRefGoogle Scholar
  161. Wang F, Hou X, Tang J (2012) A novel cold-inducible gene from Pak-choi (Brassica campestris ssp. chinensis), BcWRKY46, enhances the cold, salt and dehydration stress tolerance in transgenic tobacco. Mol Biol Rep 39:4553–4564PubMedCrossRefGoogle Scholar
  162. Wang C, Deng P, Chen L, Wang X, Ma H, Hu W, Yao N, Feng Y, Chai R, Yang G, He G (2013) A wheat WRKY transcription factor TaWRKY10 confers tolerance to multiple abiotic stresses in transgenic tobacco. PLoS One 8:e65120PubMedPubMedCentralCrossRefGoogle Scholar
  163. Wang RK, Cao ZH, Hao YJ (2014) Overexpression of a R2R3 MYB gene MdSIMYB1 increases tolerance to multiple stresses in transgenic tobacco and apples. Physiol Plant 150:76–87PubMedCrossRefGoogle Scholar
  164. Wang X, Zeng J, Li Y, Rong X, Sun J, Sun T, Li M (2015) Expression of TaWRKY44, a wheat WRKY gene, in transgenic tobacco confers multiple abiotic stress tolerances. Front Plant Sci 6:615PubMedPubMedCentralGoogle Scholar
  165. Wu G, Shao HB, Chu LY, Cai JW (2007) Insights into molecular mechanisms of mutual effect between plants and the environment. A review. Agron Sustain Dev 27:69–78CrossRefGoogle Scholar
  166. Xianjun P, Xingyong M, Weihong F, Man S, Liqin C, Alam I, Lee BH, Dongmei Q, Shihua S, Gongshe L (2011) Improved drought and salt tolerance of Arabidopsis thaliana by transgenic expression of a novel DREB gene from Leymus chinensis. Plant Cell Rep 30:1493–1502PubMedCrossRefGoogle Scholar
  167. Xie Z, Zhang ZL, Zou X, Huang J, Ruas P, Thompson D, Shen QJ (2005) Annotations and functional analyses of the rice WRKY gene superfamily reveal positive and negative regulators of abscisic acid signaling in aleurone cells. Plant Physiol 137:176–189PubMedPubMedCentralCrossRefGoogle Scholar
  168. Xie Z, Li D, Wang L, Sack FD, Grotewold E (2010) Role of the stomatal development regulators FLP/MYB88 in abiotic stress responses. Plant J 64:731–739PubMedCrossRefGoogle Scholar
  169. Xiong W, Xu X, Zhang L, Wu P, Chen Y, Li M, Jiang H, Wu G (2013) Genome-wide analysis of the WRKY gene family in physic nut (Jatropha curcas L.) Gene 524:124–132PubMedCrossRefGoogle Scholar
  170. Xiong H, Li J, Liu P, Duan J, Zhao Y, Guo X, Li Y, Zhang H, Ali J, Li Z (2014) Overexpression of OsMYB48-1, a novel MYB-related transcription factor, enhances drought and salinity tolerance in rice. PLoS One 9:e92913PubMedPubMedCentralCrossRefGoogle Scholar
  171. Xu ZS, Ni ZY, Liu L, Nie LN, Li LC, Chen M, Ma YZ (2008) Characterization of the TaAIDFa gene encoding a CRT/DRE binding factor responsive to drought, high-salt, and cold stress in wheat. Mol Genet Genomics 280:497–508PubMedCrossRefGoogle Scholar
  172. Xu ZS, Ni ZY, Li ZY, Li LC, Chen M, Gao DY, Yu XD, Liu P, Ma YZ (2009) Isolation and functional characterization of HvDREB1-a gene encoding a dehydration- responsive element binding protein in Hordeum vulgare. J Plant Res 122:121–130PubMedCrossRefGoogle Scholar
  173. Xu Z, Gongbuzhaxi, Wang C, Xue F, Zhang H, Ji W (2015) Wheat NAC transcription factor TaNAC29 is involved in response to salt stress. Plant Physiol Biochem 96:356–363PubMedCrossRefGoogle Scholar
  174. Yamasaki K, Kigawa T, Inoue M, Tateno M, Yamasaki T, Yabuki T, Aoki M, Seki E, Matsuda T, Tomo Y, Hayami N, Terada T, Shirouzu M, Tanaka A, Seki M, Shinozaki K (2005) Yokoyama S. Solution structure of an Arabidopsis WRKY DNA binding domain. Plant Cell 17:944–956PubMedPubMedCentralCrossRefGoogle Scholar
  175. Yang B, Jiang Y, Rahman MH, Deyholos MK, Kav NN (2009) Identification and expression analysis of WRKY transcription factor genes in canola (Brassica napus L.) in response to fungal pathogens and hormone treatments. BMC Plant Biol 9(68):10–1186Google Scholar
  176. Yang A, Dai X, Zhang W-H (2012) A R2R3-type MYB gene, OsMYB2, is involved in salt, cold, and dehydration tolerance in rice. J Exp Bot 63:2541–2556PubMedPubMedCentralCrossRefGoogle Scholar
  177. Yang Y, Zhu K, Wu J, Liu L, Sun G, He Y, Chen F, Yu D (2016) Identification and characterization of a novel NAC-like gene in chrysanthemum (Dendranthema lavandulifolium). Plant Cell Rep 35:1783–1798PubMedCrossRefGoogle Scholar
  178. Yanhui C, Xiaoyuan Y, Kun H et al (2006) The MYB transcription factor superfamily of Arabidopsis expression analysis and phylogenetic comparison with the rice MYB family. Plant Mol Biol 60:107–124PubMedCrossRefGoogle Scholar
  179. Yao DX, Wei Q, Xu WY, Syrenne RD, Yuan JS, Su Z (2012) Comparative genomic analysis of NAC transcriptional factors to dissect the regulatory mechanisms for cell wall biosynthesis. BMC Bioinf 13:12CrossRefGoogle Scholar
  180. Yokotani N, Ichikawa T, Kondou Y, Matsui M, Hirochika H, Iwabuchi M, Oda K (2009) Tolerance to various environmental stresses conferred by the salt-responsive rice gene ONAC063 in transgenic Arabidopsis. Planta 229:1065–1075PubMedCrossRefGoogle Scholar
  181. Yokotani N, Ichikawa T, Kondou Y, Iwabuchi M, Matsui M, Hirochika H, Oda K (2013) Role of the rice transcription factor JAmyb in abiotic stress response. J Plant Res 126:131–139PubMedCrossRefGoogle Scholar
  182. Zhang Y, Wang L (2005) The WRKY transcription factor super family its origin in eukaryotes and expansion in plants. BMC Evol Biol 5:1–12PubMedPubMedCentralCrossRefGoogle Scholar
  183. Zhang Y, Chen C, Jin XF, Xiong AS, Peng RH, Hong YH, Yao QH, Chen JM (2009) Expression of a rice DREB1 gene OsDREB1D enhances cold and high-salt tolerance in transgenic Arabidopsis. BMB Rep 42:486–492PubMedCrossRefGoogle Scholar
  184. Zhang L, Zhao G, Xia C, Jia J, Liu X, Kong X (2012) Overexpression of a wheat MYB transcription factor gene TaMYB56-B enhances tolerances to freezing and salt stresses in transgenic Arabidopsis. Gene 505:100–107PubMedCrossRefGoogle Scholar
  185. Zhang ZW, Feng LY, Cheng J, Tang H, Xu F, Zhu F, Zhao ZY, Yuan M, Chen YE, Wang JH, Yuan S, Lin HH (2013) The roles of two transcription factors ABI4 and CBFA, in ABA and plastid signalling and stress responses. Plant Mol Biol 83:445–458PubMedCrossRefGoogle Scholar
  186. Zhang X, Liu X, Wu L, Yu G, Wang X, Ma H (2015) The SsDREB transcription factor from the succulent halophyte Suaeda salsa enhances abiotic stress tolerance in transgenic tobacco. Int J Genomics 2015Google Scholar
  187. Zheng X, Chen B, Lu G, Han B (2009) Overexpression of a NAC transcription factor enhances rice drought and salt tolerance. Biochem Biophy Res Comm 379:985–989CrossRefGoogle Scholar
  188. Zhou QY, Tian AG, Zou HF, Xie ZM, Lei G, Huang J, Wang CM, Wang HW, Zhang JS, Chen SY (2008) Soybean WRKY-type transcription factor genes, GmWRKY13, GmWRKY21, and GmWRKY54, confer differential tolerance to abiotic stresses in transgenic Arabidopsis plants. Plant Biotechnol J 6:486–503PubMedCrossRefGoogle Scholar
  189. Zhu JK (2001) Plant salt tolerance. Trends Plant Sci 6:66–71PubMedCrossRefGoogle Scholar
  190. Zhu T, Budworth P, Han B, Brown D, Chang HS, Zou G, Wang X (2001) Towards elucidating the global expression patterns of developing Arabidopsis: parallel analysis of 8300 genes by a high-density oligonucleotide probe array. Plant Physiol Biochem 39:221–242CrossRefGoogle Scholar
  191. Zhu Y, Yan J, Liu W, Liu L, Sheng Y, Sun Y, Li Y, Scheller HV, Jiang M, Hou X, Ni L, Zhang A (2016) Phosphorylation of a NAC transcription factor by ZmCCaMK regulates abscisic acid-induced antioxidant defense in maize. Plant Physiol 171:1651–1664PubMedPubMedCentralCrossRefGoogle Scholar
  192. Zong JM, Li XW, Zhou YH, Wang FW, Wang N, Dong YY, Yuan YX, Chen H, Liu XM, Yao N, Li HY (2016) The AaDREB1 transcription factor from the cold-tolerant plant Adonis amurensis enhances abiotic stress tolerance in transgenic plant. Int J Mol Sci 17:E611PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Parinita Agarwal
    • 1
  • Pradeep K. Agarwal
    • 1
  • Divya Gohil
    • 1
  1. 1.Plant Omics Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific & Industrial Research (CSIR)BhavnagarIndia

Personalised recommendations