Skip to main content

Strategies to Mitigate the Salt Stress Effects on Photosynthetic Apparatus and Productivity of Crop Plants

  • Chapter
  • First Online:

Abstract

Soil salinization represents one of the major limiting factors of future increase in crop production through the expansion or maintaining of cultivation area in the future. High salt levels in soils or irrigation water represent major environmental concerns for agriculture in semiarid and arid zones. Recent advances in research provide great opportunities to develop effective strategies to improve crop salt tolerance and yield in different environments affected by the soil salinity. It was clearly demonstrated that plants employ both the common adaptative responses and the specific reactions to salt stress. The review of research results presented here may be helpful to understand the physiological, metabolic, developmental, and other reactions of crop plants to salinity, resulting in the decrease of biomass production and yield. In addition, the chapter provides an overview of modern studies on how to mitigate salt stress effects on photosynthetic apparatus and productivity of crop plants with the help of phytohormones, glycine betaine, proline, polyamines, paclobutrazol, trace elements, and nanoparticles. To understand well these effects and to discover new ways to improve productivity in salinity stress conditions, it is necessary to utilize efficiently possibilities of promising techniques and approaches focused on improvement of photosynthetic traits and photosynthetic capacity, which determines yield under salt stress conditions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

ABA:

Abscisic acid

APX:

Ascorbate peroxidase

BRs:

Brassinosteroids

CAT:

Catalase

DW:

Dry weight

EBL:

24-Epibrassinolide

FW:

Fresh weight

GPX:

Guaiacol peroxidase

JA:

Jasmonic acid

MeJA:

Jasmonate

MDHAR:

Monodehydroascorbate reductase

MDA:

Malonic dialdehyde

NPs:

Nanoparticles

Pn:

Photosynthetic rate

PAs:

Polyamines

RWC:

Relative water content

SA:

Salicylic acid

SOD:

Superoxide dismutase

WUE:

Water use efficiency

References

  • Abdelly C (2006) Caractérisation des halophytes pour le dessalement des sols salins et letraitement des eaux salines. Rapport d’activités 2007. Centre de biotechnologie à la technopoledeBorj-Cedria, Tunisie, pp 28–31

    Google Scholar 

  • Abdi N, Wasti S, Slama A, Ben Salem M, El Faleh M, Mallek-Maalej E (2016) Comparative study of salinity effect on some tunisian barley cultivars at germination and early seedling growth stages. J Plant Physiol Pathol 4(3):1–9. https://doi.org/10.4172/2329-955X.1000151

    Article  Google Scholar 

  • Agastian P, Kingsley SJ, Vivekanandan M (2000) Effect of salinity on photosynthesis and biochemical characteristics in mulberry genotypes. Photosynthetica 38:287–290

    Article  CAS  Google Scholar 

  • Ahmad M, Niazi BH, Zaman B, Athar M (2005) Varietals differences in agronomic performance of six wheat varieties grown under saline field environment. Int J Environ Sci Technol 2(1):49–57

    Google Scholar 

  • Ahmad M, Zahir Zahir A, Nazli F, Akram F, Arshad MKM (2013) Effectiveness of halo-tolerant, auxin producing pseudomonas and rhizobium strains to improve osmotic stress tolerance in mung bean (Vigna radiata L.) Braz. J Microbiol 44(4):1341–1348

    Google Scholar 

  • Aissaoui HS, Reffas S (2007) Effet de stress salin sur la productivité de populations sahariennes locales de la luzerne (Medicago sativa L.), Université Kasdi Merbah Ouargla.

    Google Scholar 

  • Al Hassan M, Chaura J, Donat-Torres MP, Boscaiu M, Vicente O (2017) Antioxidant responses under salinity and drought in three closely related wild monocots with different ecological optima. AoB Plants 9(2):1–20. https://doi.org/10.1093/aobpla/plx009

    Article  CAS  Google Scholar 

  • Alem C, Labhilili M, Brahmi K, Jlibene M, Nasrallah N, Filali-Maltouf A (2002) Adaptations hydrique et photosynthétique du blé dur et du blé tendre au stress salin. C R Biologies 325(11):1097–1109

    Article  CAS  PubMed  Google Scholar 

  • Alharby HF, Metwali EMR, Fuller MP, Aldhebiani AY (2016) Impact of application of zinc oxide nanoparticles on callus induction, plant regeneration, element content and antioxidant enzyme activity in tomato (Solanum lycopersicum Mill.) under salt stress. Arch Biol Sci 68(4):723–735

    Article  Google Scholar 

  • Ali B, Hayat S, Fariduddin Q, Ahmad A (2008) 24-Epibrassinolide protects against the stress generated by salinity and nickel in Brassica juncea. Chemosphere 72:1387–1392

    Article  CAS  PubMed  Google Scholar 

  • Al-Khateeb SA (2006) Effect of calcium/sodium ratio on growth and ion relations of alfalfa (Medicago sativa L.) seedling grown under saline condition. J Agron 5(2):175–181

    Article  Google Scholar 

  • Allakhverdiev SI, Nishiyama Y, Miyairi S, Yamamoto H, Inagaki N, Kanesaki Y, Murata N (2002) Salt stress inhibits the repair of photodamaged photosystem II by suppressing the transcription and translation of psbA genes in Synechocystis. Plant Physiol 130:1443–1453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allen SG, Dobrenz AK, Scharnhorst M, Stoner JEA (1985) Heritability of NaCl tolerance in germinating alfalfa seeds. Agron J 77:99–105

    Article  CAS  Google Scholar 

  • Almutairi ZM (2016a) Influence of silver nano-particles on the salt resistance of tomato (Solanum lycopersicum L.) during germination. Int J Agri Biol 18(2):449–457. https://doi.org/10.17957/IJAB/15.0114

    Article  CAS  Google Scholar 

  • Almutairi ZM (2016b) Effect of nano-silicon application on the expression of salt tolerance genes in germinating tomato (Solanum lycopersicum L.) seedlings under salt stress. Plant Omics Journal 9(1):106–114

    CAS  Google Scholar 

  • Anjum SA, Xie X, Wang L et al (2011) Morphological, physiological and biochemical responses of plants to drought stress. Afr J Agr Res 6:2026–2032

    Google Scholar 

  • Ashraf M, Foolad MR (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59:206–216

    Article  CAS  Google Scholar 

  • Ashraf M, Harris PJC (2004) Potential biochemical indicators of salinity tolerance in plants. Plant Sci 166:3–6

    Article  CAS  Google Scholar 

  • Askari-Khorasgani O, Emadi S, Mortazaienezhad F, Pessarakli M (2017) Differential responses of three chamomile genotypes to salinity stress with respect to physiological, morphological, and phytochemical characteristics. J Plant Nutr 40(18):2619–2630

    Article  CAS  Google Scholar 

  • Askary M, Talebi SM, Amini F, Ali D, Bangan B (2017) Effects of iron nanoparticles on Mentha piperita L. under salinity stress. Biologija 63(1):65–75

    Article  Google Scholar 

  • Askary M, Talebi SM, Amini F, Bangan ADB (2016) Effect of NaCl and iron oxide nanoparticles on Mentha piperita essential oil composition. Environ Exp Biol 14:27–32. https://doi.org/10.22364/eeb.14.05

    Article  Google Scholar 

  • Asrar H, Hussain T, Midhat S, Hadi S, Gul B, Nielsen BL, Khan MA (2017) Salinity induced changes in light harvesting and carbon assimilating complexes of Desmostachya bipinnata (L.) staph. Environ Exp Bot 135:86–95

    Article  CAS  Google Scholar 

  • Athar H-U-R, Zafar ZU, Ashraf M (2015) Glycinebetaine improved photosynthesis in canola under salt stress: evaluation of chlorophyll fluorescence parameters as potential indicators. J Agro Crop Sci 201:428–442. https://doi.org/10.1111/jac.12120

    Article  CAS  Google Scholar 

  • Atkinson MR, Findlay CP, Hope AB, Pitman MG, Saddler HDW, West KR (1967) Salt regulation in the mangroves Rhizophora mucronata Lam. and Aegialitis annulata R. Br Aust J Biol Sci 20:589–599

    Article  CAS  Google Scholar 

  • Aziz I, Khan MA (2001) Experimental assessment of salinity tolerance of Ceriops tagal seedlings and saplings from the Indus delta, Pakistan. Aqua Bot 70(3):259–268

    Article  CAS  Google Scholar 

  • Azri W, Chambon C, Herbette S, Brunel N, Coutand C, Leplé JC, Ben Rejeb I, Ammar S, Julien JL, Roeckel-Drevet P (2009) Proteome analysis of apical and basal regions of poplar stems under gravitropic stimulation. Physiol Plant 136:193–208. https://doi.org/10.1111/j.1399-3054.2009.01230.x

    Article  CAS  PubMed  Google Scholar 

  • Ballesteros E, Blumwald E, Donaire JP, Belver A (1997) Na+/H+ antiport activity in tonoplast vesicles isolated from sunflower roots induced by NaCl stress. Physiol Plant 99:328–334. https://doi.org/10.1111/j.1399-3054.1997.tb05420.x

    Article  CAS  Google Scholar 

  • Banon S, Ochoa J, Martinez JA, Fernandez JA, Franco JA, Sanchez-Blanco MJ, Alarcon JJ, Morales MA (2003) Paclobutrazol as an aid to reducing the effects of salt stress in Rhamnus alaternus plants. Acta Hortic 609:263–268

    CAS  Google Scholar 

  • Barhoumi Z, Djebali W, Smaoui A, Chaïbi W, Abdelly C (2007) Contribution of NaCl excretion to salt resistance of Aeluropus littoralis (Willd) Parl. J Plant Physiol 164(7):842–850

    Article  CAS  PubMed  Google Scholar 

  • Bartels D, Nelson D (1994) Approaches to improve stress tolerance using molecular genetics. Plant Cell Environ 17:659–667. https://doi.org/10.1111/j.1365

    Article  CAS  Google Scholar 

  • Belkheiri O, Mulas M (2013) The effects of salt stress on growth, water relations and ion accumulation in two halophyte Atriplex species. Environ Exp Bot 86:17–28

    Article  CAS  Google Scholar 

  • Ben Ahmed C, Ben Rouina B, Sensoy S, Boukhriss S, Ben Abdullah F (2010) Exogenous proline effects on photosynthetic performance and antioxidant defense system of young olive tree. J Agricult Food Chem 58:416–422

    Article  CAS  Google Scholar 

  • Ben Amor N, Ben Hamed K, Debez A, Grignon C, Abdelly C (2005) Physiological and antioxidant responses of the perennial halophyte Crithmum maritimum to salinity. Plant Sci 168:889–899

    Google Scholar 

  • Ben Hamed K, Ellouzi H, Talbi-Zribi O, Hessini K, Slama I, Ghnaya T, Munné Bosch S, Savouré A, Abdelly C (2013) Physiological response of halophytes to multiple stresses. Funct Plant Biol 40(9):883–896. https://doi.org/10.1071/FP13074

    CAS  Google Scholar 

  • Ben Hamed KB, Castagna A, Salem E, Ranieri A, Abdelly C (2007) Sea fennel (Crithmum maritimum L.) under salinity conditions: a comparison of leaf and root antioxidant responses. Plant Growth Regul 53:185–194. https://doi.org/10.1007/s10725-007-9217-8

    Article  CAS  Google Scholar 

  • Ben Hamed KB, Chibani F, Abdelly C, Magne C (2014) Growth, sodium uptake and antioxidant responses of coastal plants differing in their ecological status under increasing salinity. Biologia 69(2):193–201. https://doi.org/10.2478/s11756-013-0304-1

    Article  CAS  Google Scholar 

  • Bennaceur M, Rahmoune C, Sdiri H, Meddhi ML, Selmi M (2001) Effet du stress salin sur la germination, la croissance et la production en grains de quelques variétés maghrébines de blé. Sècheresse 12(3):167–174

    Google Scholar 

  • Benzarti M, Ben Rejeb K, Debez A, Messedi D, Abdelly C (2012) Photosynthetic activity and leaf antioxidative responses of Atriplex portulacoides subjected to extreme salinity. Acta Physiol Plant 34:1679–1688

    Article  CAS  Google Scholar 

  • Benzon HRL, Rubenecia MRU, Ultra VU, Lee SC (2015) Nano-fertilizer affects the growth, development, and chemical properties of rice. IJAAR 7(1):105–117

    Google Scholar 

  • Berthomieu P, Conejero G, Nublat A, Brackenbury WJ, Lambert C, Savio C, Uozumi N, Oik S, Yamada K, Cellier F, Gosti F, Simonneau T, Essah PA, Tester M, Véry AA, Sentenac H, Bhandal IS, Malik CP (1988) Potassium estimation, uptake, and its role in the physiology and metabolism of flowering plants. Int Rev Cytol 110:205–254

    Article  Google Scholar 

  • Bhandal IS, Malik CP (1988) Potassium estimation, uptake, and its role in the physiology and metabolism of flowering plants. Int Rev Cytol 110:205–254

    Article  CAS  Google Scholar 

  • Blaha G, Stelzl U, Spahn CM, Agrawal RK, Frank J, Nierhaus KH (2000) Preparation of functional ribosomal complexes and effect of buffer conditions on tRNA positions observed by cryoelectron microscopy. Methods Enzymol 317:292–309

    Article  CAS  PubMed  Google Scholar 

  • Blumwald E (2000) Sodium transport and salt tolerance in plants. Curr Opin Cell Biol 12(4):431–434

    Article  CAS  PubMed  Google Scholar 

  • Borsani O, Valpuesta V, Botella MA (2003) Developing salt tolerant plants in a new century: a molecular biology approach. Plant Cell Tissue Organ 73:101–115

    Article  CAS  Google Scholar 

  • Boscaiu M, Estrelles E, Soriano P, Vicente O (2005) Effects of salt stress on the reproductive biology of the halophyte Plantago crassifolia. Biol Plant 49:141–143

    Article  Google Scholar 

  • Botella MA, Quesada MA, Kononowicz A, Bressan RA, Hasegawa PM, Valpuesta V (1994) Characterization and in situ localization of a salt induced tomato peroxidase gene. Plant Mol Biol 25:105–114

    Article  CAS  PubMed  Google Scholar 

  • Brestic M, Zivcak M (2013) PSII fluorescence techniques in drought and high temperature stress signal measurement of crop plants: protocols and applications. In: Rout GR, Das AB (eds) Molecular stress physiology of plants. Springer, India, pp 87–113. https://doi.org/10.1007/978-81-322-0807-5_4

    Chapter  Google Scholar 

  • Briens M, Larher F (1982) Osmoregulation in halophytic higher plants: a comparative study of soluble carbohydrates, polyols, betaines and free proline. Plant Cell Environ 5:287–292

    CAS  Google Scholar 

  • Brugnoli E, Björkman O (1992) Growth of cotton under continuous salinity stress: influence on allocation pattern, stomatal and non-stomatal components of photosynthesis and dissipation of excess light energy. Planta 187(3):335–347

    Article  CAS  PubMed  Google Scholar 

  • Bruns S, Hecht-Buchholz C (1990) Light and electron microscope studies on the leaves of several potato cultivars after application of salt at various development stages. Potato Res 33:33–41. https://doi.org/10.1007/BF02358128

    Article  Google Scholar 

  • Bueno M, Lendínez ML, Aparicio C, Cordovilla MP (2017) Germination and growth of Atriplex prostrata and Plantago coronopus: two strategies to survive in saline habitats. Flora 227:56–63

    Article  Google Scholar 

  • Cao Z, Rossi L, Stowers C, Zhang W, Lombardini L, Ma X (2017) The impact of cerium oxide nanoparticles on the physiology of soybean (Glycine max (L.) Merr.) under different soil moisture conditions. Environ Sci Pollut Res Int 25(1):930–939. https://doi.org/10.1007/s11356-017-0501-5

    Article  PubMed  CAS  Google Scholar 

  • Chapman VJ (1960) Salt marshes and salt deserts of the world. Leonard Hill, London

    Google Scholar 

  • Chartzoulakis K, Klapaki G (2000) Response of two greenhouse pepper hybrids to NaCl salinity during different growth stages. Sci Hortic 86:247–260

    Article  CAS  Google Scholar 

  • Chaudhuri K, Choudhuri M (1997) Effects of short-term NaCl stress on water relations and gas exchange of two jute species. Biol Plant 40:373. https://doi.org/10.1023/A:1001013913773

    Article  CAS  Google Scholar 

  • Chaves M, Flexas J, Pinheiro C (2009) Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann Bot 103:551–560

    Article  CAS  PubMed  Google Scholar 

  • Chaves MM, Earl HJ, Flexas J, Loreto F, Medrano H (2011) Photosyn- thesis under water stress, flooding and salinity. In: Terrestrial photosynthesis in a changing environment. Cambridge University Press pp 49–104

    Google Scholar 

  • Cheeseman JM (1988) Mechanisms of salinity tolerance in plants. Plant Physiol 87(3):547–550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheeseman JM (2015) The evolution of halophytes, glycophytes and crops, and its implications for food security under saline conditions. New Phytol 206(2):557–570. https://doi.org/10.1111/nph.13217

    Article  PubMed  Google Scholar 

  • Chen Q, Goldstein I, Jiang W (2010) Payoff complementarities and financial fragility: evidence from mutual fund outflows. J Financ Econ 97(2):239–262

    Article  Google Scholar 

  • Chen TW, Kahlen K, Stützel H (2015) Disentangling the contributions of osmotic and ionic effects of salinity on stomatal, mesophyll, biochemical and light limitation to photosynthesis. Plant Cell Environ 38:1528–1542. https://doi.org/10.1111/pce.12504

    Article  CAS  PubMed  Google Scholar 

  • Cooil BJ, de la Fluente RK, de la Pena RS (1965) Absorption and transport of sodium and potassium in squash. Plant Physiol 40:625–633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dąbrowski P, Baczewska AH, Pawluśkiewicz B, Paunov M, Alexantrov V, Goltsev V, Kalaji MH (2016) Prompt chlorophyll a fluorescence as a rapid tool for diagnostic changes in PSII structure inhibited by salt stress in Perennial ryegrass. J Photochem Photobiol B 157:22–31. https://doi.org/10.1016/j.jphotobiol.2016.02.001

    Article  PubMed  CAS  Google Scholar 

  • Dąbrowski P, Kalaji MH, Baczewska AH, Pawluśkiewicz B, Mastalerczuk G, Borawska-Jarmułowicz B, Paunov M, Goltsev V (2017) Delayed chlorophyll a fluorescence, MR 820, and gas exchange changes in perennial ryegrass under salt stress. J Lumin 183:322–333. https://doi.org/10.1016/j.jlumin.2016.11.031

    Article  CAS  Google Scholar 

  • De Oliveira VP, Marques EC, de Lacerda CF, Prisco JT, Gomes-Filho E (2013) Physiological and biochemical characteristics of Sorghum bicolor and Sorghum sudanense subjected to salt stress in two stages of development. Afr J Agric Res 8:660–670

    Google Scholar 

  • Debez A, Hamed KB, Grignon C, Abdelly C (2004) Salinity effects on germination, growth, and seed production of the halophyte Cakile maritima. Plant Soil 262:179–189

    Article  CAS  Google Scholar 

  • Debez A, Koyro HW, Grignon C, Abdelly C, Huchzermeyer B (2008) Relationship be-tween the photosynthetic activity and the performance of Cakile maritima after long-term salt treatment. Physiol Plant 133:373–385

    Article  CAS  PubMed  Google Scholar 

  • Delfani M, Firouzabadi MB, Farrokhi N, Makarian H (2014) Some physiological responses of black-eyed pea to iron and magnesium nanofertilizers. Commun Soil Sci Plant Anal 45:530–540

    Article  CAS  Google Scholar 

  • Demiral IT (2004) Does exogenous glycinebetaine affect antioxidative system of rice seedlings under NaCl treatment? J Plant Physiol 161:1089–1100

    Article  CAS  PubMed  Google Scholar 

  • Dickison WC (2000) Integrative plant anatomy, 1st edn. Harcount Academic, San Diego

    Google Scholar 

  • Ellouzi H, Hamed KB, Cela J, Munné-Bosch S, Abdelly C (2011) Early effects of salt stress on the physiological and oxidative status of Cakile maritima (halophyte) and Arabidopsis thaliana (glycophyte). Physiol Plant 142:128–143. https://doi.org/10.1111/j.1399-3054.2011.01450.x

    Article  CAS  PubMed  Google Scholar 

  • Ellouzi H, Hamed KB, Hernández I, Cela J, Müller M, Magné C, Abdelly C, Munné-Bosch S (2014) A comparative study of the early osmotic, ionic, redox and hormonal signaling response in leaves and roots of two halophytes and a glycophyte to salinity. Planta 240(6):1299–1317. https://doi.org/10.1007/s00425-014-2154-7

    Article  CAS  PubMed  Google Scholar 

  • El-Sharkawy MS, El-Beshsbeshy TR, Mahmoud EK, Abdelkader NI, Al-Shal RM, Missaoui AM (2017) Response of alfalfa under salt stress to the application of potassium sulfate nanoparticles. Am J Plant Sci 8:1751–1773. https://doi.org/10.4236/ajps.2017.88120

    Article  Google Scholar 

  • Elzam OE, Epstein E (1969) Salt relations of two grass species differing in salt tolerance. II kinetics of the absorption of K, Na and Cl by their excised roots. Agrochimica 13:196–206

    CAS  Google Scholar 

  • Evelin H, Kapoor R, Giri B (2009) Arbuscular mycorrhizal fungi in alleviation of salt stress: a review. Ann Bot 104:1263–1280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fahn A (1990) Plant anatomy, 4th edn. Pergamon Press, New York

    Google Scholar 

  • FAO (2000) Global network on integrated soil management for sustainable use of salt-affected soils. Country Specific Salinity Issues— Iran.FAO, Rome. Available at http://www.fao.org/ag/agl/agll/spush/degrad.asp?country¼iran

  • FAO (2015) FAO cereal supply and demand brief. http://www.fao.org/worldfoodsituation/csdb/en/

  • FAO/IIASA/ISRIC/ISS-CAS/JRC (2008) Harmonized world soil database (version 1.0). FAO, Rome

    Google Scholar 

  • Fathi A, Zahedi M, Torabian S (2017) Effect of interaction between salinity and nanoparticles (Fe2O3 and ZnO) on physiological parameters of Zea mays L. J Plant Nutr 40(19):2745–2755. https://doi.org/10.1080/00103624.2013.863911

    Article  CAS  Google Scholar 

  • Flowers TJ, Colmer TD (2015) Plant salt tolerance: adaptations in halophytes. Ann Bot 115(3):327–331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flowers TJ, Hajibagheri MA, Yeo AR (1991) Ion accumulation in the cell walls of rice plants growing under saline conditions: evidence for the Oertli hypothesis. Plant, Cell and Environ 14:319–325

    Article  Google Scholar 

  • Fukuda A, Yazaki Y, Ishikawa T, Koike S, Tanaka Y (1998) Na+ /H+ antiporter in tonoplast vesicles from rice roots. Plant Cell Physiol 39:196–201

    Article  CAS  Google Scholar 

  • Gale J (1975) The combined effect of environmental factors and salinity on plant growth. In: Book: plants in saline environ, pp 186–192. https://doi.org/10.1007/978-3-642-80929-3_12

    Chapter  Google Scholar 

  • Garbarino J, Dupont FM (1989) Rapid induction of na/h exchange activity in barley root tonoplast. Plant Physiol 89(1):1–4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • García-Caparrós P, Llanderal A, Pestana M, Correia PJ, Lao MT (2017) Lavandula multifida response to salinity: growth, nutrient uptake, and physiological changes. J Plant Nutr Soil Sci 180:96–104. https://doi.org/10.1002/jpln.201600062

    Article  CAS  Google Scholar 

  • Gimenez C, Mitchell VJ, Lawlor DW (1992) Regulation of photosynthetic rate of two sunflower hybrids under water stress. Plant Physiol 98(2):516–524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Graan T, Boyer JS (1990) Very high CO2 partially restores photosynthesis in sunflower at low leaf water potentials. Planta 181:378–384

    Article  CAS  PubMed  Google Scholar 

  • Greenway H, Munns R (1980) Mechanisms of salt tolerance in nonhalophytes. Annu Rev Plant Physiol 31:149–190

    Article  CAS  Google Scholar 

  • Grennan AK (2006) Abiotic stress in rice. An “omic” approach. Plant Physiol 140(4):1139–1141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gu MF, Li N, Long XH, Brestic M, Shao HB, Li J, Mbarki S (2016) Accumulation capacity of ions in cabbage (Brassica oleracea L.) supplied with sea water. Plant Soil Environment 62(7):314–320. https://doi.org/10.17221/771/2015-PSE

    Article  CAS  Google Scholar 

  • Gucci R, Lombardini L, Tattini M (1997) Analysis of water relations in leaves of two olive (Olea Europaea) cultivars differing in tolerance to salinity. Tree Physiol 17:13–21

    Article  CAS  PubMed  Google Scholar 

  • Guerrier G (1984a) Relations entre la tolérance ou la sensibilité à la salinité lors de la germination des semences et les composantes de la nutrition en sodium. Biol Plant 26:22–28. https://doi.org/10.1007/BF02880421

    Article  CAS  Google Scholar 

  • Guerrier G (1984b) Selectivité de fixation du sodium au niveau des embryons et des jeunes plantes sensible or tolerant au NaCl. Can J Bot 62:1791–1792

    Article  CAS  Google Scholar 

  • Gupta A, Berkowitz GA (1987) Osmotic adjustment, symplast volume, and nonstomatally mediated water stress inhibition of photosynthesis in wheat. Plant Physiol 85:1040–1047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gutterman Y (1993) Seed germination in desert plants. Adaptations of desert organisms. Springer-Verlag, Berlin

    Book  Google Scholar 

  • Hachicha M (2007) Les sols salés et leur mise en valeur en Tunisie. Science et changements planétaires/Sécheresse 18(1):45–50

    Google Scholar 

  • Hachicha M, Kahlaoui B, Khamassi N, Misle E, Jouzdan O (2017) Effect of electromagnetic treatment of saline water on soil and crops Journal of the Saudi Society of Agricultural Sciences (2017) In Press, Corrected Proof, Available on line 25 March 2016

    Google Scholar 

  • Hajihashemi S, Kiarostami K, Enteshari S, Saboora A (2006) The effects of salt stress and paclobutrazol on some physiological parameters of two salt-tolerant and salt-sensitive cultivars of wheat. Pakistan J Biol Sci 9(7):1370–1374

    Article  Google Scholar 

  • Hajlaoui H, El Ayeb N, Garrec JP, Denden M (2010) Differential effects of salt stress on osmotic adjustment and solutes allocation on the basis of root and leaf tissue senescence of two silage maize (Zea mays L.) varieties. Ind Crop Prod 31(1):122–130

    Article  CAS  Google Scholar 

  • Hamdy A (1999) Active damping of vibrations in elevator cars. J Struct Control 6:53–100. https://doi.org/10.1002/stc.4300060105

    Article  Google Scholar 

  • Hameed A, Gulzar S, Aziz I, Hussain T, Gul B, Khan MA (2015) Effects of salinity and ascorbic acid on growth, water status and antioxidant system in a perennial halophyte. AoB Plants 7:plv004. https://doi.org/10.1093/aobpla/plv004

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Haouala F, Ferjani H, Ben El Hadj S (2007) Effet de la salinité sur la répartition des cations (Na+, K+ et Ca2+) et du chlore (Cl) dans les parties aériennes et les racines du ray-grass anglais et du chiendent. Biotechnol Agron Soc Environ 11(3):235–244

    CAS  Google Scholar 

  • Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol 51:463–499

    Article  CAS  PubMed  Google Scholar 

  • Hassani A, Dellal A, Belkhodja M, Kaid-Harche M (2008) Effect of salinity on water and some osmolytes in barley (Hordeum vulgare). Eur J Sci Res 23:61–69

    Google Scholar 

  • He S, Schulthess AW, Mirdita V, Zhao Y, Korzun V, Bothe R, Ebmeyer E, Reif JC, Jiang Y (2016) Genomic selection in a commercial winter wheat population. Theor Appl Genet 129(3):641–651. https://doi.org/10.1007/s00122-015-2655-1

    Article  CAS  PubMed  Google Scholar 

  • Heidari M, Sarani S (2012) Growth, biochemical components and ion content of chamomile (Matricaria chamomilla L.) under salinity stress and iron deficiency. J Saudi Soc Agric Sci 11(1):37–42

    CAS  Google Scholar 

  • Hernández JA, Olmos E, Corpas FJ, Sevilla F, del Río LA (1995) Salt-induced oxidative stress in chloroplasts of pea plants. Plant Sci 105(2):151–167

    Article  Google Scholar 

  • Hernández JA, Campillo A, Jiménez A, Alarcón JJ, Sevilla E (1999) Response of antioxidant systems and leaf water relations to NaCl stress in pea plants. New Phytol 141:241–251

    Article  Google Scholar 

  • Hillel D, Vlek PLG (2005) The sustainability of irrigation. Adv Agron 87:55–84. https://doi.org/10.1016/S0065-2113(05)87002-6

    Article  Google Scholar 

  • Hniličková H, Hnilička F, Martinková J, Kraus K (2017) Effects of salt stress on water status, photosynthesis and chlorophyll fluorescence of rocket. Plant Soil Environ 63:362–367

    Article  Google Scholar 

  • Hoque MA, Okuma E, Banu MNA, Nakamura Y, Shimoishi Y, Murata Y (2007) Exogenous proline mitigates the detrimental effects of salt stress more than exogenous betaine by increasing antioxidant enzyme activities. J Plant Physiol 164:553–561

    Article  CAS  PubMed  Google Scholar 

  • Hose E, Clarkson DT, Steudle E, Schreiber L, Hartung W (2001) The exodermis: a variable apoplastic barrier. J Exp Bot 52(365):2245–2264

    Article  CAS  PubMed  Google Scholar 

  • Hossain MS, Persicke M, AI ES, Kalinowski J, Dietz KJ (2017) Metabolite profiling at the cellular and subcellular level reveals metabolites associated with salinity tolerance in sugar beet. J Exp Bot 68(21–22):5961–5976

    Article  PubMed  Google Scholar 

  • Hristova V, Popova L (2002) Treatment with methyl jasmonate alleviates the effects of paraquat on photosynthesis in barley plants. Photosynthetica 40:567. https://doi.org/10.1023/A:1024356120016

    Article  CAS  Google Scholar 

  • Hu Y, Schmidhalter U (2000) A two-pinhole technique to determine distribution profiles of relative elemental growth rates in the growth zone of grass leaves. Aust J Plant Physiol 27:1187–1190

    Article  Google Scholar 

  • Hu Y, Yu W, Liu T, Shafi M, Song L, Du X, Huang X, Yue Y, Wu J (2017) Effects of paclobutrazol on cultivars of Chinese bayberry (Myrica rubra) under salinity stress. Photosynthetica 55(3):443–453. https://doi.org/10.1007/s11099-016-0658-z

    Article  CAS  Google Scholar 

  • Huez-López MA, Ulery April L, Samani Z, Picchioni G, Flynn RP (2011) Response of chile pepper (Capsicum annuum L.) to salt stress and organic and inorganic nitrogen sources: i. Growth and yield. Trop Subtrop Agroecosyst 14:137–147

    Google Scholar 

  • Ibrahim EA (2016) Seed priming to alleviate salinity stress in germinating seeds. J Plant Physiol 192:38–46. https://doi.org/10.1016/j.jplph.2015.12.011

    Article  CAS  PubMed  Google Scholar 

  • Itai C (1999) Role of phytohormones in plant responses to stresses. In: Lerner HR (ed) Plant responses to environmental stress. From phytohormones to genome reorganization. Marcel Dekker, New York, pp 287–301

    Google Scholar 

  • Iyengar ERR, Reddy MP (1996) Photosynthesis in highly salt-tolerant plants. In: Pessaraki M (ed) Handbook of photosynthesis. Marcel Dekker, New York, pp 897–909

    Google Scholar 

  • Jan SA, Bibi N, Shinwari KS, Rabbani MA, Ullah S, Qadir A, Khan N (2017) Impact of salt, drought, heat and frost stresses on morpho-biochemical and physiological properties of Brassica species: An updated review. J Rural Dev Agric 2(1):1–10

    Google Scholar 

  • Javid MG, Sorooshzadeh A, Moradi F, Sanavy SAMM, Allahdadi I (2011) The role of phytohormones in alleviating salt stress in crop plants. Aust J Crop Sci 5:726–734

    CAS  Google Scholar 

  • Jia J, Bai J, Gao H, Wen X, Zhang G, Cui B, Liu X (2017) In situ soil net nitrogen mineralization in coastal salt marshes (Suaeda salsa) with different flooding periods in a Chinese estuary. Ecol Indic 73:559–565

    Article  CAS  Google Scholar 

  • Joshi R, Sahoo KK, Tripathi AK, Kumar R, Gupta BK, Pareek A, Singla-Pareek SL (2017) Knockdown of an inflorescence meristem‐specific cytokinin oxidase–OsCKX2 in rice reduces yield penalty under salinity stress condition. Plant Cell Environ https://doi.org/10.1111/pce.12947

  • Kachout SS, Mansoura AB, Leclerc JC, Jaffel K, Rejeb MN, Ouerghi Z (2009) Effects of heavy metals on antioxidant activities of Atriplex hortensis and Atriplex rosea. J Appl Bot Food Qual 83(1):37–43

    Google Scholar 

  • Kafi M, Shariat JM, Moayedi A (2013) The sensitivity of grain sorghum (Sorghum bicolor L.) developmental stages to salinity stress: an integrated approach. J Agric Sci Tech 15(4):723–736

    Google Scholar 

  • Kafkai U (1991) Root growth under stress. Plant roots: the hidden half. Marcel Dekker, New York, USA, pp 375–391

    Google Scholar 

  • Kalaji H, Rastogi A, Živčák M, Brestic M et al (2018) Prompt chlorophyll fluorescence as a tool for crop phenotyping: an example of barley landraces exposed to various abiotic stress factors. Photosynthetica. https://doi.org/10.1007/s11099-018-0766-z

  • Kalaji HM, Govindjee BK et al (2011) Effects of salt stress on photosystem II efficiency and CO2 assimilation of two Syrian barley landraces. Environ Exp Bot 73:64–72

    Article  CAS  Google Scholar 

  • Kalaji MH, Goltsev V, Zuk-Golaszewska B, Zivcak M, Brestic M (2017) Chlorophyll fluorescence: understanding crop performance—basics and applications. Taylor and Francis, p 222. ISBN 9781498764490

    Google Scholar 

  • Kamiab F, Talaie A, Javanshah A, Khezri M, Khalighi A (2012) Effect of long-term salinity on growth, chemical composition and mineral elements of pistachio (Pistacia vera cv. Badami-Zarand) rootstock seedlings. Annals Biol Res 3(12):5545–5551

    CAS  Google Scholar 

  • Kan X, Ren J, Chen T, Cui M, Li C, Zhou R, Zhang Y, Liu H, Deng D, Yin Z (2017) Effects of salinity on photosynthesis in maize probed by prompt fluorescence, delayed fluorescence and P700 signals. Environ Exp Bot 140:56–64

    Article  CAS  Google Scholar 

  • Kang DJ, Seo YJ, Lee JD, Ishii R, Kim KU, Shin DH, Park SK, Jang SW, Lee IJ (2005) Jasmonic acid differentially affects growth, ion uptake and abscisic acid concentration in salt-tolerant and salt-sensitive rice cultivars. J Agron Crop Sci 191:273–282

    Article  CAS  Google Scholar 

  • Kanwal H, Ashraf M, Shahbaz M (2011) Assessment of salt tolerance of some newly developed and candidate wheat (Triticum Aestivum L.) cultivars using gas exchange and chlorophyll fluorescence attributes. Pak J Bot 43:2693–2699

    CAS  Google Scholar 

  • Kao RR, Gravenor MB, McLean AR (2001) Modelling the national scrapie eradication programme in the UK. Math Biosci 174:61–76

    Article  CAS  PubMed  Google Scholar 

  • Karray-Bouraoui N (1995) Analyse des facteurs responsables de la tolérance au stress salin chez une céréale hybride le triticale: croissance, nutrition et métabolisme respiratoire. Thèse Doc. Univ, Tunis

    Google Scholar 

  • Kavi Kishor PB, Sreenivasulu N (2014) Is proline accumulation per se correlated with stress tolerance or is proline homeostasis a more critical issue? Plant Cell Environ 37:300–311. https://doi.org/10.1111/pce.12157

    Article  CAS  PubMed  Google Scholar 

  • Keiper FJ, Chen DM, De Filippis LF (1998) Respiratory, photosynthetic and ultrastructural changes accompanying salt adaptation in culture of Eucalyptus microcorys. J Plant Physiol 152(4-5):564–573

    Article  CAS  Google Scholar 

  • Khan AM, Ungar IA (1998) Germination of the salt tolerant shrub Suaeda fruticosa from. Pakistan: salinity and temperature responses. Seed Sci Technol 26:657–667

    Google Scholar 

  • Khan MA, Ungar IA, Showalter AM (2000) The effect of salinity on the growth, water status, and ion content of a leaf succulent perennial halophyte Suadea fruticosa (L.) Forssk. J Arid Environ 45:73–84

    Article  Google Scholar 

  • Khan N, Syeed S, Masood A, Nazar R, Iqbal N (2010) Application of salicylic acid increases contents of nutrients and antioxidative metabolism in mungbean and alleviates adverse effects of salinity stress. Int J Plant Biol 1(1):1–8

    Article  CAS  Google Scholar 

  • Khavari-Nejad RA, Chaparzadeh N (1998) The effects of NaCl and CaCl2 on photosynthesis and growth of alfalfa plants. Photosynthetica 35(3):461–466

    Article  CAS  Google Scholar 

  • Khavari-Nejad R, Mostofi Y (1998) Effects of NaCl on photosynthetic pigments, saccharides, and chloroplast ultrastructure in leaves of tomato cultivars. Photosynthetica 35:151. https://doi.org/10.1023/A:1006846504261

    Article  CAS  Google Scholar 

  • Khunpon B, Chaum S, Faiyue B, Uthaibutra J, Saengnil K (2017) Influence of paclobutrazol on growth performance, photosynthetic pigments, and antioxidant efficiency of Pathumthani 1 rice seedlings grown under salt stress. ScienceAsia 43:70–81. https://doi.org/10.2306/scienceasia1513-1874.2017.43.070

    Article  Google Scholar 

  • Kishor A, Srivastav M, Dubey AK, Singh AK, Sairam RK, Pandey RN, Dahuja A, Sharma RR (2009) Paclobutrazol minimises the effects of salt stress in mango (Mangifera indica L.) J Hortic Sci Biotechnol 84(4):459–465

    Article  CAS  Google Scholar 

  • Klepper B, Barrs HD (1968) Effects of salt secretion on psychrometric determinations of water potential of cotton leaves. Plant Physiol 43(7):1138–1140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kurban H, Saneoka H, Nehira K, Adilla R, Premachandra GS, Fujita K (1999) Effect of salinity on growth, photosynthesis and mineral composition in leguminous plant Alhagi pseudoalhagi (Bieb.) Soil Sci Plant Nutr 45(4):851–862

    Article  CAS  Google Scholar 

  • Lachhab I, Louahlia S, Laamarti M, Hammani K (2013) Effet d’un stress salin sur la germination et l’activité enzymatique chez deux génotypes de Medicago sativa. IJIAS 3(2):511–516

    CAS  Google Scholar 

  • Lamsal K, Paudyal GN, Saeed M (1999) Model for assessing impact of salinity on soil water availability and crop yield. Agr Water Manage 41:57–70

    Article  Google Scholar 

  • Latef AAHA, Alhmad MFA, Abdelfattah KE (2017) The possible roles of priming with zno nanoparticles in mitigation of salinity stress in lupine (Lupinus termis) plants. J Plant Growth Regul 36(1):60–70. https://doi.org/10.1007/s00344-016-9618-x

    Article  CAS  Google Scholar 

  • Levitt J (1980) Responses of plant to environmental stress water, radiation, salt and other stresses. Academic Press, New York

    Google Scholar 

  • Li M, Guo S, Xu Y, Meng Q, Li G, Yang X (2014) Glycine betaine-mediated potentiation of HSP gene expression involves calcium signaling pathways in tobacco exposed to NaCl stress. Physiol Plant 150(1):63–75

    Article  CAS  PubMed  Google Scholar 

  • Liphschitz N, Waisel Y (1974) Existence of salt glands in various genera of Gramineae. New Phytol 73(3):507–513

    Article  Google Scholar 

  • Liu JH, Wang W, Wu H, Gong X, Moriguchi T (2015) Polyamines function in stress tolerance: from synthesis to regulation. Front Plant Sci 6:827. https://doi.org/10.3389/fpls.2015.00827

    PubMed  PubMed Central  Google Scholar 

  • Liu R, Lai R (2015) Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Sci Total Environ 51:131–139

    Article  CAS  Google Scholar 

  • Llanes A, Bertazza G, Palacio G, Luna V (2013) Different sodium salts cause different solute accumulation in the halophyte Prosopis strombulifera. Plant Biol 15:118–125

    Article  CAS  PubMed  Google Scholar 

  • Longstreth DJ, Nobel PS (1979) Salinity effects on leaf anatomy. Plant Physiol 63(4):700–703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lv YC, Xu G, Sun JN, Brestič M, Živčák M, Shao HB (2015) Phosphorus release from the soils in the Yellow River Delta: dynamic factors and implications for eco-restoration. Plant Soil Environ 61(8):339–343. https://doi.org/10.17221/666/2014-PSE

    CAS  Google Scholar 

  • Lyshede OB (1917) Studies on the mucilaginolls cells in lhl.': k ar ol' .YparlO()'Slislis jilipes. PIOllfa 133:255–260

    Google Scholar 

  • Manan MM, Ibrahim NA, Aziz NA, Zulkifly HH, Al-Worafi YM, Long CM (2016) Empirical use of antibiotic therapy in the prevention of early onset sepsis in neonates: a pilot study. Arch Med Sci 12:603–613. https://doi.org/10.5114/aoms.2015.51208

    Article  PubMed  Google Scholar 

  • Marcum KB, Anderson SJ, Engelk MC (1998) Salt gland ion secretion/A salinity tolerance mechanism among five Zoysiagrass species. Crop Sci 38:806–810

    Article  Google Scholar 

  • Marcum KB, Murdoch CL (1994) Salinity tolerance mechanisms of six C4 turfgrasses. J Amer Soc Hort Sci 119(4):779–784

    CAS  Google Scholar 

  • Mass EV, Grieve CM (1990) Spike and leaf development in salt stressed wheat. Crop Sci 30:1309–1313

    Article  Google Scholar 

  • Mass EV, Nieman RH (1978) Physiology of plant tolerance to salinity. In: Jung GA (ed) Crop tolerance to suboptimal land conditions. Amer. Soc. Agron. Spec. Publ, USA, pp 277–299

    Google Scholar 

  • Mastronardi E, Tsae P, Zhang X, Monreal CM, DeRosa MC (2015) Strategic role of nanotechnology in fertilizers: potential and limitations. In: Rai M, Ribeiro C, Mattoso L, Duran N (eds) Nanotechnologies in food and agriculture. Springer, Berlin

    Google Scholar 

  • Mauseth JD (1988) Plant Anatomy. The Benjamin/Cummings Publishing Co, Inc, California

    Google Scholar 

  • Megdiche W, Amor BN, Debez A, Hessini K, Ksouri R, Zuily-Fodil Y, Abdelly C (2007) Salt tolerance of the annual halophyte Cakile maritima as affected by the provenance and the developmental stage. Acta Physiol Plant 29:375–384

    Article  CAS  Google Scholar 

  • Mehta P, Jajoo A, Mathur M, Bharti S (2010) Chlorophyll a fluorescence study revealing effects of high salt stress on photosystem II in wheat leaves. Plant Physiol Biochem 48:16–20

    Article  CAS  PubMed  Google Scholar 

  • Menezes RV, Azevedo Neto AD, Oliveira Ribeiro M, Cova AMW (2017) Growth and contents of organic and inorganic solutes in amaranth under salt stress. Pesq Agropec Trop 47(1):22–30

    Article  Google Scholar 

  • Mermoud A (2006) Cours de physique du sol : Maîtrise de la salinité des sols. Ecole polytechnique fédérale de Lausanne, p 23

    Google Scholar 

  • Messedi D, Labidi N, Grignon C, Abdelly C (2004) Limits imposed by salt to the growth of the halophyte Sesuvium portulacastrum. JPNSS 167(6):720–725

    CAS  Google Scholar 

  • Misra AN, Srivastava A, Strasser RJ (2001) Utilization of fast chlorophyll a fluorescence technique in assessing the salt/ion sensitivity of mung bean and brassica seedlings. J Plant Physiol 158:1173–1181

    Article  CAS  Google Scholar 

  • Mitsuya S, Takeoka Y, Miyake H (2000) Effects of sodium chloride on foliar ultrastructure of sweet potato (Ipomoea batatas Lam.) plantlets grown under light and dark conditions in vitro. J Plant Physiol 157(6):661–667

    Article  CAS  Google Scholar 

  • Mohammad M, Shibli R, Ajlouni M, Nimri L (1998) Tomato root and shoot responses to salt stress under different levels of phosphorus nutrition. J Plant Nutr 21(8):1667–1680

    Article  CAS  Google Scholar 

  • Moles TM, Pompeiano A, Huarancca Reyes T, Scartazza A, Guglielminetti L (2016) The efficient physiological strategy of a tomato landrace in response to short-term salinity stress. Plant Physiol Biochem 109:262–272. https://doi.org/10.1016/j.plaphy.2016.10.008

    Article  CAS  PubMed  Google Scholar 

  • Moons A, Prinsen E, Bauw G, Montagu MV (1997) Antagonistic effects of abscisic acid and jasmonates on salt stress-inducible transcripts in rice roots. Plant Cell 9:2243–2259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morais MC, Panuccio MR, Muscolo A, Freitas H (2012) Salt tolerance traits increase the invasive success of Acacia longifolia in Portuguese coastal dunes. Plant Physiol Biochem 55:60–65

    Article  CAS  PubMed  Google Scholar 

  • Mozafar A, Goodin JR (1970) Vesiculated hairs: a mechanism for salt tolerance in Atriplex halimus L. Plant Physiol 45:62–65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muchate NS, Nikalje GC, Rajurkar NS, Suprasanna P, Nikam TD (2016) Physiological responses of the halophyte Sesuvium portulacastrum to salt stress and their relevance for saline soil bio-reclamation. Flora 224:96–105

    Article  Google Scholar 

  • Munns R (1993) Physiological processes limiting plant growth in saline soils: some dogmas and hypotheses. Plant Cell Environ 16:15–24

    Article  CAS  Google Scholar 

  • Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250

    Article  CAS  PubMed  Google Scholar 

  • Munns R, Gilliham M (2015) Salinity tolerance of crops what is the cost? New Phytol 208(3):668–673

    Article  CAS  PubMed  Google Scholar 

  • Munns R, James RA, Sirault XR, Furbank RT, Jones HG (2010) New phenotyping methods for screening wheat and barley for beneficial responses to water deficit. J Exp Bot 61(13):3499–3507. https://doi.org/10.1093/jxb/erq199

    Article  CAS  PubMed  Google Scholar 

  • Munns R, James RA, Läuchli A (2006) Approaches to increasing the salt tolerance of wheat and other cereals. J Exp Bot 57(5):1025–1043

    Article  CAS  PubMed  Google Scholar 

  • Munns R, Rawson HM (1999) Effect of salinity on salt accumulation and reproductive development in the apical meristem of wheat and barley. Funct Plant Biol 26(5):459–464

    Google Scholar 

  • Munns R, Termaat A (1986) Whole plant responses to salinity. Aust J Plant Physiol 13:143–160

    Article  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Google Scholar 

  • Naderi MR, Danesh-Shahraki A (2013) Nanofertilizers and their roles in sustainable agriculture. Int J Agric Crop Sci 5:2229–2232

    Google Scholar 

  • Nawaz K, Ashraf M (2010) Exogenous application of glycinebetaine modulates activities of antioxidants in maize plants subjected to salt stress. J Agri Crop Sci 196:28–37. https://doi.org/10.1111/j.1439-037X.2009.00385.x

    Article  CAS  Google Scholar 

  • Negrão S, Schmöckel SM, Tester M (2017) Evaluating physiological responses of plants to salinity stress. Ann Bot 119(1):1–11

    Article  PubMed  Google Scholar 

  • Niu X, Bressan RA, Hasegawa PM, Pardo JM (1995) Ion homeostasis in NaCl stress environments. Plant Physiol 109:735–742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nivedithadevi D, Somasundaram R, Pannerselvam R (2012) Effect of abscisic acid, paclobutrazol and salicylic acid on the growth and pigment variation in Solanum trilobatum (I). Int J Drug Dev Res 4(3):236–246

    CAS  Google Scholar 

  • Oertli JJ (1968) Extracellular salt accumulation a possible mechanism of salt injury in plants. Agrochimica 12:461–469

    Google Scholar 

  • Orcutt DM, Nilsen ET (2000) The physiology of plants under stress: soil and biotic factors. JohnWiley and Sons, New York

    Google Scholar 

  • Orcutt DM, Nilsene T (2000) Physiology of plants under stress. John Wiley & Sons Inc., New York, NY, USA

    Google Scholar 

  • Orsini F, Cascone P, De Pascale S, Barbieri G, Corrado G, Rao R, Maggio A (2010) Systemin-dependent salinity tolerance in tomato: evidence of specific convergence of abiotic and biotic stress responses. Physiolo Plant 138:10–21. https://doi.org/10.1111/j.1399-3054.2009.01292.x

    Article  CAS  Google Scholar 

  • Osmond CB, Lüttge U, West KR, Pallaghy CK, Shacher-Hill B (1969) Ion absorption in Atriplex leaf tissue. II. Secretion of ions to epidermal bladders. Aust J Biol Sci 22:797–814

    Article  CAS  Google Scholar 

  • Owens S (2001) Salt of the earth. Genetic engineering may help to reclaim agricultural land lost due to salinisation. EMBO Rep 2:877–879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Özdemir F, Bor M, Demiral T, Türkan I (2004) Effects of 24-epibrassinolide on seed germination, seedling growth, lipid peroxidation, proline content and antioxidative system of rice (Oryza sativa L.) under salinity stress. Plant Growth Regul 42:203–211. https://doi.org/10.1023/B:GROW.0000026509.25995.13

    Article  Google Scholar 

  • Parida AK, Das AB (2005) Salt tolerance and salinity effect on plants: a review. Ecotoxicol Environ Saf 60:324–349

    Article  CAS  PubMed  Google Scholar 

  • Parida AK, Das AB, Mittra B, Mohanty P (2004) Salt-stress induced alterations in protein profile and protease activity in the mangrove Bruguiera parviflora. Zeitschrift für Naturforschung C 59(5-6):408–414

    Article  CAS  Google Scholar 

  • Parvin S, Lee OR, Sathiyaraj G, Khorolragchaa A, Kim YJ, Yang DC (2014) Spermidine alleviates the growth of saline-stressed ginseng seedlings through antioxidative defense system. Gene 537(1):70–78. https://doi.org/10.1016/j.gene.2013.12.021

    Article  CAS  PubMed  Google Scholar 

  • Pires RMO, Leite DG, Santos HO, Souza GA, Von Pinho EVR (2017) Physiological and enzymatic alterations in sesame seeds submitted to different osmotic potentials. Genet Mol Res 16(3). https://doi.org/10.4238/gmr16039425

  • Pompeiano A, Di Patrizio E, Volterrani M, Scartazza A, Guglielminetti L (2016) Growth responses and physiological traits of seashore paspalum subjected to short-term salinity stress and recovery. Agric Water Manag 163:57–65

    Article  Google Scholar 

  • Poonam T, Tanushree B, Sukalyan C (2013) Water quality indicesimportant tools for water quality assessment: a review. Int J Adv Chem (IJAC) 1(1):15–28

    Google Scholar 

  • Price AH, Hendry GAF (1991) Iron-catalysed oxygen radical formation and its possible contribution to drought damage in nine native grasses and three cereals. Plant Cell Environ 14:477–484. https://doi.org/10.1111/j.1365-3040.1991.tb01517.x

    Article  CAS  Google Scholar 

  • Puyang X, An M, Han L, Zhang X (2015) Protective effect of spermidine on salt stress induced oxidative damage in two Kentucky bluegrass (Poa pratensis L.) cultivars. Ecotoxicol Environ Saf 117:96–106. https://doi.org/10.1016/j.ecoenv.2015.03.023

    Article  CAS  PubMed  Google Scholar 

  • Qadir M, Quillérou E, Nangia V, Murtaza G, Singh M, Thomas RJ, Noble AD (2014) Economics of salt-induced land degradation and restoration. Nat Res Forum 38(4):282–295

    Article  Google Scholar 

  • Qadir M, Qureshi AS, Cheraghi SAM (2008) Extent and characterisation of salt-affected soils in Iran and strategies for their amelioration and management. Land Degrad Dev 19(2):214–227

    Article  Google Scholar 

  • Qiu Z, Guo J, Zhu A, Zhang L, Zhang M (2014) Exogenous jasmonic acid can enhance tolerance of wheat seedlings to salt stress. Ecotoxicol Environ Saf 104:202–208

    Article  CAS  PubMed  Google Scholar 

  • Quin L, Guo S, Ai W, Tang Y, Cheng Q, Chen G (2013) Effect of salt stress on growth and physiology in amaranth and lettuce: implications for bioregenerative life support system. Adv Space Res 51(3):476–482

    Article  CAS  Google Scholar 

  • Rahman MS, Miyake H, Takeoka Y (2002) Effects of exogenous glycinebetaine on growth and ultrastructure of salt-stressed rice seedlings (Oryza sativa L.) Plant Prod Sci 5:33–44

    Article  CAS  Google Scholar 

  • Rajesh A, Arumugam R, Venkatesalu V (1998) Growth and photosynthetic characteristics of Ceriops roxburghiana under NaCl stress. Photosynthetica 35:285. https://doi.org/10.1023/A:1006983411991

    Article  CAS  Google Scholar 

  • Rao PS, Mishra B, Gupta SR, Rathore A (2008) Reproductive stage tolerance to salinity and alkalinity stresses in rice genotypes. Plant Breed 127:256–261. https://doi.org/10.1111/j.1439-0523.2007.01455.x

    Article  Google Scholar 

  • Rastogi A, Zivcak M, Sytar O, Kalaji HM, He X, Mbarki S, Brestic M (2017) Impact of metal and metal oxide nanoparticles on plant: a critical review. Front Chem 5:78. https://doi.org/10.3389/fchem.2017.00078

    Article  PubMed  PubMed Central  Google Scholar 

  • Rewald B, Raveh E, Gendler T, Ephrath JE, Rachmilevitch S (2012) Phenotypic plasticity and water flux rates of Citrus root orders under salinity. J Exp Bot 63(7):2717–2727. https://doi.org/10.1093/jxb/err457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rico CM, Morales MI, McCreary R, Castillo-Michel H, Barrios AC, Hong J, Tafoy A, Lee WY, Varela-Ramirez A, Peralta-Videa JR, Gardea-Torresdey JL (2013) Cerium oxide nanoparticles modify the antioxidative stress enzyme activities and macromolecule composition in rice seedlings. Environ Sci Technol 47(24):14110–14118. https://doi.org/10.1021/es4033887

    Article  CAS  PubMed  Google Scholar 

  • Romero-Aranda MR, Jurado O, Cuartero J (2006) Silicon alleviates the deleterious salt effect on tomato plant growth by improving plant water status. J Plant Physiol 163(8):847–855

    Article  CAS  PubMed  Google Scholar 

  • Romero-Aranda R, Soria T, Cuartero J (2001) Tomato plant-water uptake and plant-water relationships under saline growth conditions. Plant Sci 160(2):265–272

    Article  CAS  PubMed  Google Scholar 

  • Rossi L, Zhang W, Lombardini L, Ma X (2016) The impact of cerium oxide nanoparticles on the salt stress responses of Brassica napus L. Environ Pollut 219:28–36

    Article  CAS  PubMed  Google Scholar 

  • Roychoudhury A, Basu S, Sengupta DN (2011) Amelioration of salinity stress by exogenously applied spermidine or spermine in three varieties of indica rice differing in their level of salt tolerance. J Plant Physiol 168:317–328

    Article  CAS  PubMed  Google Scholar 

  • Rozema J, Riphagen J (1977) Physiology and ecologic relevance of salt secretion by the salt gland of Glaux maritima L. Oecologia 29:349–357

    Article  PubMed  Google Scholar 

  • Sabaghnia N, Janmohammadi M (2014) Effect of nano-silicon particles application on salinity tolerance in early growth of some lentil genotypes. Ann UMCS Biol 69:39–55

    Google Scholar 

  • Saneoka H, Nagasaka C, Hahn DT, Yang WJ, Premachandra GS, Joly RJ, Rhodes D (1995) Salt tolerance of glycinebetaine-deficient and -containing maize lines. Plant Physiol 107:631–638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scholander PF, Hammel HT, Hemmingson ED, Garey W (1962) Salt balance in mangroves. Plant Physiol 37:722–729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sekmen AH, Turkan I, Tanyolac ZO, Ozfidan C, Dinc A (2012) Different antioxidant defense responses to salt stress during germination and vegetative stages of endemic halophyte Gypsophila oblanceolata bark. Environ Exp Bot 77:63–76

    Article  CAS  Google Scholar 

  • Sengupta S, Majumder AL (2010) Porteresia. coarctata (Roxb.) Tateoka, a wild rice: a potential model for studying salt-stress biology in rice. Plant Cell Environ 33:526–542

    Article  CAS  PubMed  Google Scholar 

  • Shahbaz M, Ashraf M (2013) Improving salinity tolerance in cereals. Crit Rev Plant Sci 32(4):237–249

    Article  Google Scholar 

  • Shahid MA, Pervez MA, Balal RM, Mattson NS, Rashid A, Ahmad R, Ayyub CM, Abbas T (2011) Brassinosteroid (24-epibrassinolide) enhances growth and alleviates the deleterious effects induced by salt stress in pea (Pisum sativum L.) Aust J Crop Sci 5:500–510

    CAS  Google Scholar 

  • Shakir E, Zahraw Z, Al-Obaidy AHM (2017) Environmental and health risks associated with reuse of wastewater for irrigation. Egypt J Pet 26(1):95–102

    Article  Google Scholar 

  • Shang Q, Song S, Zhang Z, Guo S (2006) Exogenous brassinosteroid induced salt resistance of cucumber (Cucumis sativus L.) seedlings. Sci Agric Sinica 39:1872–1877

    CAS  Google Scholar 

  • Sharma I, Bhardwaj R, Pati PK (2012) Mitigation of adverse effects of chlorpyrifos by 24-epibrassinolide and analysis of stress markers in a rice variety Pusa Basmati-1. Ecotoxicol Environ Saf 85:72–81

    Article  CAS  PubMed  Google Scholar 

  • Sheteawi AS (2007) Improving growth and yield of salt stressed soybean by exogenous application of jasmonic acid and ascobin. Int J Agric Biol 3:473–478

    Google Scholar 

  • Shomer I, Frenkel H, Polinger C (1991) The existence of a diffuse electric layer at cellulose fibril surfaces and its role in the swelling mechanism of parenchyma plant cell walls. Carbohydr Polym 16:199–210

    Article  CAS  Google Scholar 

  • Siadat H, Bybordi M, Malakouti MJ (1997) Salt-affected soils of Iran: a country report. international symposium on sustainable management of salt-affected soils in the arid ecosystem, Cairo

    Google Scholar 

  • Siddique AB, Islam R, Hoque A, Hasan M, Tanvir RM, Mahir UM (2015) Mitigation of salt stress by foliar application of proline in rice. Univers J Agric Res 3:81–88. https://doi.org/10.13189/ujar.2015.030303

    Google Scholar 

  • Siddiqui MH, Al-Whaibi MH (2014) Role of nano-SiO2 in germination of tomato (Lycopersicum esculentum seeds mill.) Saudi J Biol Sci 21:13–17

    Article  CAS  PubMed  Google Scholar 

  • Siddiqui MH, Al-Whaibi MH, Faisal M, Al Sahli AA (2014) Nano-silicon dioxide mitigates the adverse effects of salt stress on Cucurbita pepo L. Environ Toxicol Chem 33:2429–2437

    Article  CAS  PubMed  Google Scholar 

  • Silberbush M, Ben-Asher J, Ephrath JE (2005) A model for nutrient and water flow and their uptake by plants grown in a soilless culture. Plant Soil 271(1-2):309–319

    Article  CAS  Google Scholar 

  • Singh SB, Singh BB, Singh M (1994) Effect of kinetin on chlorophyll, nitrogen and proline in mung bean under saline conditions. Indian J Plant Physiol 37:37–39

    CAS  Google Scholar 

  • Slama I, Abdelly C, Bouchereau A, Flowers T, Savoure A (2015) Diversity, distribution and roles of osmoprotective compounds accumulated in halophytes under abiotic stress. Ann Bot 115:433–447. https://doi.org/10.1093/aob/mcu239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Slama I, M’Rabet R, Ksouri R, Talbi O, Debez A, Abdelly C (2017) Effects of salt treatment on growth, lipid membrane peroxidation, polyphenol content, and antioxidant activities in leaves of Sesuvium portulacastrum L. Arid Land Res Manag 31(4):404–417

    Article  CAS  Google Scholar 

  • Smaoui MA (1971) Differentiation des trichomes chez Atriplex halimus L. CR Acad Sci Paris Ser D 273:1268–1271

    Google Scholar 

  • Sobahan MA, Akter N, Ohno M, Okuma E, Hirai Y, Mori IC, Nakamura Y, Murata Y (2012) Effects of exogenous proline and glycinebetaine on the salt tolerance of rice cultivars. Biosci Biotechno Biochem 76(8):1568–1570. https://doi.org/10.1271/bbb.120233

    Article  CAS  Google Scholar 

  • Soliman AS, El-feky SA, Darwish E (2015) Alleviation of salt stress on Moringa peregrina using foliar application of nanofertilizers. J Hortic For 7(2):36–47

    Article  CAS  Google Scholar 

  • Souleymane O, Hamidou M, Salifou M, Manneh B, Danquah E, Ofori K (2017) Genetic improvement of rice (Oryza sativa) for salt tolerance: a review. Inter J Advanc Res Botany 3:22–33. https://doi.org/10.20431/2455-4316.0303004

    Google Scholar 

  • Soussi M, Ocana A, Lluch C (1998) Effects of salt stress on growth, photosynthesis and nitrogen fixation in chickpea (Cicer arietinum L.) J Expt Bot 49:1329–1337

    Article  CAS  Google Scholar 

  • Staal M, Maathuis FJM, Elzenga JTM, Overbeek JHM, Prins HBA (1991) Na+/H+ antiport activity in tonoplast vesicles from roots of the salt-tolerant Plantago maritima and the salt-sensitive Plantago media. Physiol Plant 82:179–184. https://doi.org/10.1111/j.1399-3054.1991.tb00078.x

    Article  CAS  Google Scholar 

  • Stassart JM, Neirinckx L, De Jaegere R (1981) The interactions between monovalent cations and calcium during their adsorption on isolated cell walls and absorption by intact barley roots. Ann Bot 47(5):647–652

    Article  CAS  Google Scholar 

  • Stefanov M, Yotsova E, Rashkov G, Ivanova K, Markovska Y, Apostolova EL (2016) Effects of salinity on the photosynthetic apparatus of two Paulownia lines. Plant Physiol Biochem 101:54–59. https://doi.org/10.1016/j.plaphy.2016.01.017

    Article  CAS  PubMed  Google Scholar 

  • Strasser RJ, Tsimilli-Michael M, Qiang S, Goltsev V (2010) Simultaneous in vivo recording of prompt and delayed fluorescence and 820-nm reflection changes during drying and after rehydration of the resurrection plant Haberlea rhodopensis. Biochimica et Biophysica Acta (BBA) - Bioenergetics 1797:1313–1326

    Article  CAS  Google Scholar 

  • Sun S, An M, Han L, Yin S (2015) Foliar application of 24-epibrassinolide improved salt stress tolerance of perennial ryegrass. Hortscience 50:1518–1523

    CAS  Google Scholar 

  • Sun ZW, Ren LK, Fan JW, Li Q, Wang KJ, Guo MM, Wang L, Li J, Zhang GX, Yang ZY, Chen F, Li XN (2016) Salt response of photosynthetic electron transport system in wheat cultivars with contrasting tolerance. Plant Soil Environ 62:515–521

    Article  CAS  Google Scholar 

  • Taiz L, Zeiger E (2002) Plant physiology, 3rd edn. Sinauer Associates, Sunderland, MA, 690 pp

    Google Scholar 

  • Tang X, Mu X, Shao H, Wang H, Brestic M (2015) Global plant-responding mechanisms to salt stress: physiological and molecular levels and implications in biotechnology. Crit Rev Biotechnol 35(4):425–437. https://doi.org/10.3109/07388551.2014.889080

    Article  PubMed  CAS  Google Scholar 

  • Tehranifar A, Jamalian S, Tafazoli E, Davarynejad GH, Eshghi S (2009) Interaction effects of paclobutrazol and salinity on photosynthesis and vegetative growth of strawberry plants. Acta Hortic 842:821–824. https://doi.org/10.17660/ActaHortic.2009.842.181

    Article  CAS  Google Scholar 

  • Tester M, Davenport R (2003) Na+ tolerance and Na+ transport in higher plants. Ann Bot 91(5):503–527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomson WW (1975) The structure and function of salt glands. In: Poljakoff-Mayber A, Gale J (eds) Plants in saline environments. Springer, Heidelberg, pp 118–146

    Chapter  Google Scholar 

  • Thomson WW, Faraday CD, Oross JW (1988) Salt glands. In: Baker DA, Hall JL (eds) Solute transport in plant cells and tissues. Longman Scientific & Technical, Essex, UK, pp 498–537

    Google Scholar 

  • Thomson WW, Platt-Aloia K (1979) Ultrastructural transitions associated with the development of the bladder cells of the trichomes of Atriplex. Cytobios 25:105–114

    CAS  PubMed  Google Scholar 

  • Tsonev TD, Lazova GN, Stoinova ZG, Popova LP (1998) A possible role for jasmonic acid in adaptation of barley seedling to salinity stress. J Plant Growth Regul 17:153–159

    Article  CAS  Google Scholar 

  • Tukey HB Jr, Tukey HB, Wittwer SH (1958) Loss of nutrients by foliar leaching as determined by radioisotopes. P Am Soc Hortic Sci 71:496–506

    CAS  Google Scholar 

  • Tukey HB, Morgan JV (1962) The occurrence of leaching from above ground plant parts and the nature of the material leached. 16th Intern Hort Congr Brussels:153–160

    Google Scholar 

  • Tyerman SD, Skerrett IM (1999) Root ion channels and salinity. Sci Hort 78:175–235. https://doi.org/10.1016/s0304-4238(98)00194-0

    Article  CAS  Google Scholar 

  • Vardhini BV, Anjum NA (2015) Brassinosteroids make plant life easier under abiotic stresses mainly by modulating major components of antioxidant defense system. Front Environ Sci 2:67

    Article  Google Scholar 

  • Varjovi MB, Valizadeh M, Vahed MM (2016) Effect of salt stress and exogenous application of proline on some antioxidant enzymes activity in barley cultivars seedling. Biological forum. An International Journal 8(2):34–41

    Google Scholar 

  • Vicente O, Boscaiu M, Naranjo MÁ, Estrelles E, Bellés JM, Soriano P (2004) Responses to salt stress in the halophyte Plantago crassifolia (Plantaginaceae). J Arid Environ 58(4):463–481

    Article  Google Scholar 

  • Von Willert DJ (1968) Tagesschwankungen des Ionengehalts in Salicornia europaea in Abhängigkeit vom Standort und von der Überflutung. Ber Dtsch Bot Ges Bd 81(10):442–449

    Google Scholar 

  • Wahid A (2003) Physiological significance of morpho-anatomical features of halophytes with particular reference to Cholistan flora. Int J Agric Biol 5:207–212

    Google Scholar 

  • Waisel Y (1972) Biology of halophytes. Academic Press, New York

    Google Scholar 

  • Wang L, Li W, Yang H, Wu W, Ma LI, Huang T, Wang X (2016) Physiological and biochemical responses of a medicinal halophyte Limonium bicolor (Bag.) kuntze to salt-stress. Pak J Bot 48(4):1371–1377

    CAS  Google Scholar 

  • Wang W, Wang R, Yuan Y, Du N, Guo W (2011) Effects of salt and water stress on plant biomass and photosynthetic characteristics of tamarisk (Tamarix chinensis Lour.) seedlings. Afr J Biotechnol 10:17981–11789

    CAS  Google Scholar 

  • Wang Y, Nil N (2000) Changes in chlorophyll, ribulose biphosphate carboxylase-oxygenase, glycine betaine content, photosynthesis and transpiration in Amaranthus Tricolor leaves during salt stress. J Hortic Sci Biotechnol 75:623–627

    Article  CAS  Google Scholar 

  • Wang YY, Mopper S, Hasenstein KH (2001) Effects of salinity on endogenous ABA, IAA, JA, and SA in Iris hexagona. J Chem Ecol 27:327–342

    Article  CAS  PubMed  Google Scholar 

  • Weisany W, Sohrabi Y, Heidari G, Siosemardeh A, Golezani KG (2012) Changes in antioxidant enzymes activity and plant performance by salinity stress and zinc application in soybean (Glycine max L.) Plant OMICS 5(2):60–67

    CAS  Google Scholar 

  • Wilson C, Shannon MC (1995) Salt-induced Na+/H+ antiport in root plasma membrane of a glycophytic and halophytic species of tomato. Plant Sci 107:147–157

    Article  CAS  Google Scholar 

  • Wu W, Zhang Q, Ervin EH, Yang Z, Zhang X (2017) Physiological mechanism of enhancing salt stress tolerance of perennial ryegrass by 24-epibrassinolide. Front Plant Sci 8:1017. https://doi.org/10.3389/fpls.2017.01017

    Article  PubMed  PubMed Central  Google Scholar 

  • Wyn Jones RG, Brady CJ, Speirs J (1979) Ionic and osmotic relations in plant cells. In: Laidman DL, Wyn Jones RG (eds) Recent advances in the biochemistry of cereals. Academic Press, London, pp 63–103

    Google Scholar 

  • Yan K, Wu C, Zhang L, Chen X (2015) Contrasting photosynthesis and photoinhibition in tetraploid and its autodiploid honeysuckle (Lonicera japonica Thunb.) under salt stress. Front Plant Sci 6:227. https://doi.org/10.3389/fpls.2015.00227

    PubMed  PubMed Central  Google Scholar 

  • Yan P, Shao HB, Shao C, Chen P, Zhao S, Brestic M, Chen X (2013) Physiological adaptive mechanisms of plant grown in saline soil and implications for sustainable saline agriculture in coastal zone. Acta Physiologia Plantarum:2867–2878. https://doi.org/10.1007/s11738-013-1325-7

  • Yang X, Lu C (2006) Effects of exogenous glycinebetaine on growth, CO2 assimilation, and photochemistry of maize plants. Photosystem II. Physiol Plant 127(4):593–602

    Article  CAS  Google Scholar 

  • Yang X, Lu C (2005) Photosynthesis is improved by exogenous glycinebetaine in salt-stressed maize plants. Physiol Plant 124:343–352. https://doi.org/10.1111/j.1399-3054.2005.00518.x

    Article  CAS  Google Scholar 

  • Yasemin S, Koksal N, Özkaya A, Yener M (2017) Growth and physiological responses of ‘Chrysanthemum paludosum’ under salinity stress. J Biol Environ Sci 11(32):59–66

    Google Scholar 

  • Yassen A, Abdallah E, Gaballah M, Zaghloul S (2017) Role of silicon dioxide nano fertilizer in mitigating salt stress on growth, yield and chemical composition of cucumber (Cucumis sativus L.) Int J Agric Res 12:130–135. https://doi.org/10.3923/ijar.2017.130.135

    Article  Google Scholar 

  • Yeo A (1998) Molecular biology of salt tolerance in the context of whole-plant physiology. J Exp Bot 49(323):915–929

    CAS  Google Scholar 

  • Yeo AR (1983) Salinity resistance: physiologies and prices. Physiol Plant 58:214–222. https://doi.org/10.1111/j.1399-3054.1983.tb04172.x

    Article  CAS  Google Scholar 

  • Yeo AR, Lee ΛS, Izard P, Boursier PJ, Flowers TJ (1991) Short-and long-term effects of salinity on leaf growth in rice (Oryza sativa L.) J Exp Bot 42(7):881–889

    Article  CAS  Google Scholar 

  • Yoon JY, Hamayun M, Lee SK, Lee IJ (2009) Methyl jasmonate alleviated salinity stress in soybean. J Crop Sci Biotechnol 12:63–68

    Article  Google Scholar 

  • Zhang J, Davies WJ (1989) Abscisic acid produced in dehydrating roots may enable the plant to measure the water status of the soil. Plant Cell Environ 12:73–81

    Article  CAS  Google Scholar 

  • Zhang Y, Hu XH, Shi Y, Zou ZR, Yan F, Zhao YY, Zhang H, Zhao JZ (2013) Beneficial role of exogenous spermidine on nitrogen metabolism in tomato seedlings exposed to saline–alkaline stress. J Am Soc Hortic Sci 138(1):38–49

    CAS  Google Scholar 

  • Zhang Y, Zhang H, Zou ZR, Liu Y, Hu XH (2015) Deciphering the protective role of spermidine against saline–alkaline stress at physiological and proteomic levels in tomato. Phytochemistry 110:13–21. https://doi.org/10.1016/j.phytochem.2014.12.021

    Article  CAS  PubMed  Google Scholar 

  • Zhao L, Peng B, Hernandez-Viezcas JA, Rico C, Sun Y, Peralta-Videa JR, Tang X, Niu G, Jin L, Varela-Ramirez A, Zhang JY, Gardea-Torresdey JL (2012) Stress response and tolerance of Zea mays to CeO2 nanoparticles: cross talk among H2O2, heat shock protein and lipid peroxidation. ACS Nano 6:9615–9622. https://doi.org/10.1021/nn302975u

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu JK (2001) Plant salt tolerance. Trends Plant Sci 6(2):66–71

    Article  CAS  PubMed  Google Scholar 

  • Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu J, Meinzer CF (1999) Efficiency of C4 photosynthesis in Atriplex lentiformis under salinity stress. Aust J Plant Physiol 26:79–86

    Article  Google Scholar 

  • Zid E, Grignon C (1991) Les tests de sélection précoce pour la résistance des plantes aux stress. Cas des stress salin et hydrique. L’amélioration des plantes pour l’adaptation aux milieux arides. Ed. John Libbey. Eurotext, Paris, pp 91–108

    Google Scholar 

  • Ziegler H, Lüttge U (1967) Die Salzdrüsen von Limonium vulgare. Planta 74:1–17. https://doi.org/10.1007/BF0038516

    Article  CAS  PubMed  Google Scholar 

  • Zivcak M, Brestic M, Sytar O (2016) Osmotic adjustment and plant adaptation to drought stress. In: Hossain MA (ed) Drought stress tolerance in plants, vol 1. Springer International Publishing, Switzerland, pp 105–143

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Oksana Sytar or Marian Brestic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mbarki, S. et al. (2018). Strategies to Mitigate the Salt Stress Effects on Photosynthetic Apparatus and Productivity of Crop Plants. In: Kumar, V., Wani, S., Suprasanna, P., Tran, LS. (eds) Salinity Responses and Tolerance in Plants, Volume 1. Springer, Cham. https://doi.org/10.1007/978-3-319-75671-4_4

Download citation

Publish with us

Policies and ethics