Skip to main content

Salinity Stress Responses and Adaptive Mechanisms in Major Glycophytic Crops: The Story So Far

  • Chapter
  • First Online:
Salinity Responses and Tolerance in Plants, Volume 1

Abstract

In many areas of the world, salinity is a major abiotic stress-limiting growth and productivity of plants due to increasing use of poor quality of water for irrigation and soil salinisation. Various physiological traits, metabolic pathways and molecular or gene networks are involved in plant adaptation or tolerance to salinity stress. This chapter deals with the adaptive mechanisms that plants can employ to cope with the challenge of salt stress and provide updated overview of salt-tolerant mechanisms in major glycophytic crops with a particular interest in rice (Oryza sativa), soybean (Glycine max), wheat (Triticum aestivum) and Arabidopsis plants. Salt stress usually inhibits seed germination, seedling growth and vigour, biomass accumulation, flowering and fruit set in major glycophytic crops. In addition, elevated Na + levels in agricultural lands are increasingly becoming a serious threat to the world agriculture. Plants suffer osmotic and ionic stress under high salinity due to the salts accumulated at the outside of roots and those accumulated at the inside of the plant cells, respectively. Salinity stress significantly reduces growth and productivity of glycophytes, which are the majority of agricultural products. Plants tolerant to NaCl implement a series of adaptations to acclimate to salinity, including morphological, physiological, biochemical and molecular changes regulating plant adaptation and tolerance to salinity stress. These changes affect plant growth and development at different levels of plant organisation, e.g. they may reduce photosynthetic carbon gain and leaf growth rate and increase in the root/canopy ratio and in the chlorophyll content in addition to changes in the leaf anatomy that ultimately lead to preventing leaf ion toxicity, thus maintaining the water status in order to limit water loss and protect the photosynthesis process. Finally, we also provide an updated discussion on salt-induced oxidative stress at the subcellular level and its effect on the antioxidant machinery in major glycophyte crops plants. In response to salinity stress, the productions of ROS, such as singlet oxygen, superoxide, hydroxyl radical and hydrogen peroxide, are enhanced, and overexpression of genes leading to increased amounts and activities of antioxidant enzymes like superoxide dismutase (SOD), catalase (CAT) and glutathione-S-transferase (GST)/glutathione peroxidase (GPX) increases the performance of plants under stress. The molecular mechanism of stress tolerance is complex and requires information at the miRNA/omics level to understand it effectively. During abiotic stress conditions, the advancement of “omics” is providing a detailed fingerprint of proteins, transcripts or all metabolites upregulated or downregulated in plant cells. However, the regulatory mechanisms of these protein-coding genes are largely unknown; in this regard, the microRNAs (miRNAs) may prove extremely important in deciphering these gene regulatory mechanisms and the stress responses. Some miRNAs are functionally conserved across plant species and are regulated by salt stress. In major crops through transgenic technologies, miRNAs represent themselves as potent targets to engineer abiotic stress tolerance, due to the critical roles in post-transcriptional regulation of gene expression in response to salinity and resultant growth attenuation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

·OH:

Hydroxyl radical

CAT:

Catalase

Ci:

Intercellular CO2 concentration

ETR:

Electron transport rate

GPX:

Glutathione peroxidase

gs:

Stomatal conductance

GST:

Glutathione-S-transferase

H2O2 :

Hydrogen peroxide

ICDH:

NADP-specific isocitrate dehydrogenase

MDA:

Malondialdehyde

miRNA:

microRNAs

N:

Nitrogen

NRA:

Nitrate reductase activity

O2 :

Superoxide

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

SOS:

Salt overly sensitive signal pathway

SPAD:

Soil and plant analyser development

References

  • Abd EL-Samad HM, Komy HM, Shaddad MAK, Hetta AM (2005) Effect of molubdenum on nitrogenase and nitrate reductase activities of wheat inoculated with Azospirillium brasilense growth under drought stress. Gen Appl Plant Physiol 31(1–2):43–54

    Google Scholar 

  • Acosta-Motos J-R, Diaz-Vivancos P, Álvarez S, Fernández-García N, Sanchez-Blanco MJ, Hernández JA (2015) Physiological and biochemical mechanisms of the ornamental Eugenia myrtifolia L. plants for coping with NaCl stress and recovery. Planta 242(4):829–846

    Article  CAS  PubMed  Google Scholar 

  • Acosta-Motos JR, Ortuño MF, Bernal-Vicente A, Diaz-Vivancos P, Sanchez-Blanco MJ, Hernandez JA (2017) Plant responses to salt stress: adaptive mechanisms. Agronomy 7(1):18

    Article  Google Scholar 

  • Adem GD, Roy SJ, Zhou M, Bowman JP, Shabala S (2014) Evaluating contribution of ionic, osmotic and oxidative stress components towards salinity tolerance in barley. BMC Plant Biol 14(1):113

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ahmad P, Prasad MNV (2011a) Abiotic stress responses in plants: metabolism, productivity and sustainability. Springer, New York/Dordrecht/Heidelberg/London

    Google Scholar 

  • Ahmad P, Prasad MNV (2011b) Environmental adaptations and stress tolerance of plants in the era of climate change. Springer, New York/Dordrecht/Heidelberg/London

    Google Scholar 

  • Ahmed J, Bano M (1992) The effect of sodium-chloride on the physiology of cotyledons and mobilization of reserved food in cicer-arietinum. Pak J, Bot 24(1):40–48

    Google Scholar 

  • Akbarimoghaddam H, Galavi M, Ghanbari A, Panjehkeh N (2011) Salinity effects on seed germination and seedling growth of bread wheat cultivars. Trakia J Sci 9(1):43–50

    Google Scholar 

  • Akram NA, Jamil A (2007) Appraisal of physiological and biochemical selection criteria for evaluation of salt tolerance in canola (Brassica napus L.) Pak J Bot 39(5):1593–1608

    Google Scholar 

  • Alam R, Sazzadur Rahman M, Seraj ZI, Thomson MJ, Ismail AM, Tumimbang-Raiz E, Gregorio GB (2011) Investigation of seedling-stage salinity tolerance QTLs using backcross lines derived from Oryza sativa L. Pokkali. Plant Breed 130(4):430–437

    Article  CAS  Google Scholar 

  • Apse MP, Aharon GS, Snedden WA, Blumwald E (1999) Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis. Science 285(5431):1256–1258

    Article  CAS  PubMed  Google Scholar 

  • Asada K (1987) Production and scavenging of active oxygen in photosynthesis. Photoinhibition

    Google Scholar 

  • Asada K (1992) Ascorbate peroxidase–a hydrogen peroxide-scavenging enzyme in plants. Physiol Plant 85(2):235–241

    Article  CAS  Google Scholar 

  • Ashraf M (2002) Exploitation of genetic variation for improvement of salt tolerance in spring wheat. In: Prospects for saline agriculture. Springer, New York/Dordrecht/Heidelberg/London, pp 113–121

    Google Scholar 

  • Ashraf M, Foolad M (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59(2):206–216

    Article  CAS  Google Scholar 

  • Ashraf M, Harris P (2013) Photosynthesis under stressful environments: an overview. Photosynthetica 51(2):163–190

    Article  CAS  Google Scholar 

  • Ashraf M, Wahid S (2000) Time-course changes in organic metabolites and mineral nutrients in germinating maize seeds under salt (NaCl) stress. Seed Sci Technol 28(3):641–656

    Google Scholar 

  • Ashraf M, Wu L (1994) Breeding for salinity tolerance in plants. Crit Rev Plant Sci 13(1):17–42

    Article  Google Scholar 

  • Ashraf M, Zafar R, Ashraf MY (2003) Time-course changes in the inorganic and organic components of germinating sunflower achenes under salt (NaCl) stress. Flora-Morphol Distribution Funct Ecol Plants 198(1):26–36

    Article  Google Scholar 

  • Austin JR, Frost E, Vidi P-A, Kessler F, Staehelin LA (2006) Plastoglobules are lipoprotein subcompartments of the chloroplast that are permanently coupled to thylakoid membranes and contain biosynthetic enzymes. Plant Cell 18(7):1693–1703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Azza A, Fatma E, Favahat M (2007) Responses of ornamental plants woody trees to salinity world. J Agric Sci 3:386–395

    Google Scholar 

  • Babgohari MZ, Niazi A, Moghadam AA, Deihimi T, Ebrahimie E (2013) Genome-wide analysis of key salinity-tolerance transporter (HKT1; 5) in wheat and wild wheat relatives (A and D genomes). In Vitro Cell Dev Biol Plant 49(2):97–106

    Article  CAS  Google Scholar 

  • Baghel L (2017) Magnetopriming of soybean seeds – advantages, inheritance and stress tolerance. Ph.D Thesis, School of Life Sciences, DAVV, Indore, India

    Google Scholar 

  • Baghel L, Kataria S, Guruprasad KN (2016) Static magnetic field treatment of seeds improves carbon and nitrogen metabolism under salinity stress in soybean. Bioelectromagnetics 37(7):455–470

    Article  CAS  PubMed  Google Scholar 

  • Baki G, Siefritz F, Man HM, Weiner H, Kaldenhoff R, Kaiser W (2000) Nitrate reductase in Zea mays L. under salinity. Plant Cell Environ 23(5):515–521

    Article  Google Scholar 

  • Bayuelo-Jimenez JS, Craig R, Lynch JP (2002) Salinity tolerance of species during germination and early seedling growth. Crop Sci 42(5):1584–1594

    Article  Google Scholar 

  • Bekki A, Trinchant JC, Rigaud J (1987) Nitrogen fixation (C2H2 reduction) by Medicago nodules and bacteroids under sodium chloride stress. Physiol Plant 71(1):61–67

    Article  CAS  Google Scholar 

  • Beltagi M, Ismail MA, Mohamed FH (2006) Induced salt tolerance in common bean (Phaseolus vulgaris L.) by gamma irradiation. Pak J Biol Sci 9(6):1143–1148

    Article  Google Scholar 

  • Birben E, Sahiner UM, Sackesen C, Erzurum S, Kalayci O (2012) Oxidative stress and antioxidant defense. World Allergy Organ J 5(1):9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bliss R, Platt-Aloia K, Thomson W (1986) Osmotic sensitivity in relation to salt sensitivity in germinating barley seeds. Plant Cell Environ 9(9):721–725

    Article  CAS  Google Scholar 

  • Blumwald E (2000) Sodium transport and salt tolerance in plants. Curr Opin Cell Biol 12(4):431–434

    Article  CAS  PubMed  Google Scholar 

  • Bose J, Rodrigo-Moreno A, Shabala S (2013) ROS homeostasis in halophytes in the context of salinity stress tolerance. J Exp Bot:ert430

    Google Scholar 

  • Bradford KJ (1995) Water relations in seed germination. Seed Dev Germination 1(13):351–396

    Google Scholar 

  • Bray EA (1997) Plant responses to water deficit. Trends Plant Sci 2(2):48–54

    Article  Google Scholar 

  • Brevedan R, Egli D (2003) Short periods of water stress during seed filling, leaf senescence, and yield of soybean. Crop Sci 43(6):2083–2088

    Article  Google Scholar 

  • Brini F, Hanin M, Lumbreras V, Amara I, Khoudi H, Hassairi A, Pages M, Masmoudi K (2007) Overexpression of wheat dehydrin DHN-5 enhances tolerance to salt and osmotic stress in Arabidopsis thaliana. Plant Cell Rep 26(11):2017–2026

    Article  CAS  PubMed  Google Scholar 

  • Bruns S, Hecht-Buchholz C (1990) Light and electron microscope studies on the leaves of several potato cultivars after application of salt at various development stages. Potato Res 33(1):33–41

    Article  Google Scholar 

  • Bustingorri C, Lavado RS (2011) Soybean growth under stable versus peak salinity. Sci Agric 68(1):102–108

    Article  Google Scholar 

  • Bustingorri C, Lavado R (2013) Soybean response and ion accumulation under sprinkler irrigation with sodium-rich saline water. J Plant Nutr 36(11):1743–1753

    Article  CAS  Google Scholar 

  • Bybordi A (2010) The influence of salt stress on seed germination, growth and yield of canola cultivars. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 38(1):128

    CAS  Google Scholar 

  • Byrt CS, Xu B, Krishnan M, Lightfoot DJ, Athman A, Jacobs AK, Watson-Haigh NS, Plett D, Munns R, Tester M (2014) The Na+ transporter, TaHKT1; 5-D, limits shoot Na+ accumulation in bread wheat. Plant J 80(3):516–526

    Article  CAS  PubMed  Google Scholar 

  • Carillo P, Mastrolonardo G, Nacca F, Fuggi A (2005) Nitrate reductase in durum wheat seedlings as affected by nitrate nutrition and salinity. Funct Plant Biol 32(3):209–219

    Article  CAS  Google Scholar 

  • Carillo P, Mastrolonardo G, Nacca F, Parisi D, Verlotta A, Fuggi A (2008) Nitrogen metabolism in durum wheat under salinity: accumulation of proline and glycine betaine. Funct Plant Biol 35(5):412–426

    Article  CAS  Google Scholar 

  • Carpýcý E, Celýk N, Bayram G (2009) Effects of salt stress on germination of some maize (Zea mays L.) cultivars. Afr J Biotechnol 8(19)

    Google Scholar 

  • Casadevall R, Rodriguez RE, Debernardi JM, Palatnik JF, Casati P (2013) Repression of growth regulating factors by the microRNA396 inhibits cell proliferation by UV-B radiation in Arabidopsis leaves. Plant Cell 25(9):3570–3583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cassaniti C, Leonardi C, Flowers TJ (2009) The effects of sodium chloride on ornamental shrubs. Sci Hortic 122(4):586–593

    Article  CAS  Google Scholar 

  • Cassaniti C, Romano D, Flowers TJ (2012) The response of ornamental plants to saline irrigation water. Intech Open Access Publisher

    Google Scholar 

  • Chang H, Siegel B, Siegel S (1984) Salinity-induced changes in isoperoxidases in taro Colocasia esculenta. Phytochemistry 23(2):233–235

    Article  CAS  Google Scholar 

  • Chaves M, Flexas J, Pinheiro C (2009) Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann Bot 103(4):551–560

    Article  CAS  PubMed  Google Scholar 

  • Cheeseman JM (1988) Mechanisms of salinity tolerance in plants. Plant Physiol 87(3):547–550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen G-X, Asada K (1989) Ascorbate peroxidase in tea leaves: occurrence of two isozymes and the differences in their enzymatic and molecular properties. Plant Cell Physiol 30(7):987–998

    CAS  Google Scholar 

  • Chen D, Yu R (1995) Studies on relative salt tolerance of crops II. Salt tolerance of some main crop species. Acta Pedol Sin 33(2):121–128

    Google Scholar 

  • Chen C, Tao C, Peng H, Ding Y (2007) Genetic analysis of salt stress responses in asparagus bean (Vigna unguiculata (L.) ssp. sesquipedalis Verdc.) J Hered 98(7):655–665

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Ren F, Zhong H, Jiang W, Li X (2009) Identification and expression analysis of genes in response to high-salinity and drought stresses in Brassica napus. Acta Biochim Biophys Sin 42(2):154–164

    Article  CAS  Google Scholar 

  • Chinnusamy V, Jagendorf A, Zhu J-K (2005) Understanding and improving salt tolerance in plants. Crop Sci 45(2):437–448

    Article  CAS  Google Scholar 

  • Cho U-H, Park J-O (2000) Mercury-induced oxidative stress in tomato seedlings. Plant Sci 156(1):1–9

    Article  CAS  PubMed  Google Scholar 

  • Colmer T, Munns R, Flowers T (2006) Improving salt tolerance of wheat and barley: future prospects. Aust J Exp Agric 45(11):1425–1443

    Article  Google Scholar 

  • Comba M, Benavides M, Gallego S, Tomaro M (1997) Relationship between nitrogen fixation and oxidative stress induction in nodules of salt-treated soybean plants. Phyton

    Google Scholar 

  • Cramer GR (2002) Sodium-calcium interactions under salinity stress. In: Salinity: environment-plants-molecules. Springer, Dordrecht, pp 205–227

    Google Scholar 

  • Davenport R, James RA, Zakrisson-Plogander A, Tester M, Munns R (2005) Control of sodium transport in durum wheat. Plant Physiol 137(3):807–818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deane-Drummond CE, Glass AD (1982) Studies of nitrate influx into barley roots by the use of 36ClO3− as a tracer for nitrate. 1. Interactions with chloride and other ions. Can J Bot 60(10):2147–2153

    Article  Google Scholar 

  • Delfine S, Alvino A, Zacchini M, Loreto F (1998) Consequences of salt stress on conductance to CO2 diffusion, Rubisco characteristics and anatomy of spinach leaves. Funct Plant Biol 25(3):395–402

    CAS  Google Scholar 

  • Demir M, Arif I (2003) Effects of different soil salinity levels on germination and seedling growth of safflower (Carthamus tinctorius l). Turkish J Agric 27:221–227

    Google Scholar 

  • Ding D, Zhang L, Wang H, Liu Z, Zhang Z, Zheng Y (2009) Differential expression of miRNAs in response to salt stress in maize roots. Ann Bot 103(1):29–38

    Article  CAS  PubMed  Google Scholar 

  • Duarte B, Santos D, Marques J, Caçador I (2013) Ecophysiological adaptations of two halophytes to salt stress: photosynthesis, PS II photochemistry and anti-oxidant feedback–implications for resilience in climate change. Plant Physiol Biochem 67:178–188

    Article  CAS  PubMed  Google Scholar 

  • El Naim AM, Mohammed KE, Ibrahim EA, Suleiman NN (2012) Impact of salinity on seed germination and early seedling growth of three sorghum (Sorghum biolor L. Moench) cultivars. Sci Technol 2(2):16–20

    Article  Google Scholar 

  • Elstner EF (1987) Metabolism of activated oxygen species. The biochemistry of plants: a comprehensive treatise (USA)

    Google Scholar 

  • Farhoudi R, Sharifzadeh F, Poustini K, Makkizadeh M, Kochak Por M (2007) The effects of NaCl priming on salt tolerance in canola (Brassica napus) seedlings grown under saline conditions. Seed Sci Technol 35(3):754–759

    Article  Google Scholar 

  • Feng L, Han Y, Liu G, An B, Yang J, Yang G, Li Y, Zhu Y (2007) Overexpression of sedoheptulose-1, 7-bisphosphatase enhances photosynthesis and growth under salt stress in transgenic rice plants. Funct Plant Biol 34(9):822–834

    Article  CAS  Google Scholar 

  • Flagella Z, Trono D, Pompa M, Di Fonzo N, Pastore D (2006) Seawater stress applied at germination affects mitochondrial function in durum wheat (Triticum durum) early seedlings. Funct Plant Biol 33(4):357–366

    Article  CAS  Google Scholar 

  • Flores P, Botella M, Martinez V, Cerdá A (2000) Ionic and osmotic effects on nitrate reductase activity in tomato seedlings. J Plant Physiol 156(4):552–557

    Article  CAS  Google Scholar 

  • Flowers T (2004) Improving crop salt tolerance. J Exp Bot 55(396):307–319

    Article  CAS  PubMed  Google Scholar 

  • Flowers T, Duque E, Hajibagheri M, McGonigle T, Yeo A (1985) The effect of salinity on leaf ultrastructure and net photosynthesis of two varieties of rice: further evidence for a cellular component of salt-resistance. New Phytol 100(1):37–43

    Article  Google Scholar 

  • Flowers T, Koyama M, Flowers S, Sudhakar C, Singh K, Yeo A (2000) QTL: their place in engineering tolerance of rice to salinity. J Exp Bot 51(342):99–106

    Article  CAS  PubMed  Google Scholar 

  • Foolad M (1999) Comparison of salt tolerance during seed germination and vegetative growth in tomato by QTL mapping. Genome 42(4):727–734

    Article  CAS  Google Scholar 

  • Foyer CH (1993) Ascorbic acid. Antioxidants Higher Plants:31–58

    Google Scholar 

  • Foyer CH, Lelandais M, Edwards EA, Mullineaux PM (1991) The role of ascorbate in plants, interactions with photosynthesis, and regulatory significance. Current Topics Plant Physiol (USA)

    Google Scholar 

  • Franco JA, Fernández JA, Bañón S, González A (1997) Relationship between the effects of salinity on seedling leaf area and fruit yield of six muskmelon cultivars. Hortscience 32(4):642–644

    Google Scholar 

  • Franco J, Bañón S, Vicente M, Miralles J, Martínez-Sánchez J (2011) Review article: root development in horticultural plants grown under abiotic stress conditions–a review. J Hortic Sci Biotechnol 86(6):543–556

    Article  Google Scholar 

  • Fridovich I (1986a) Biological effects of the superoxide radical. Arch Biochem Biophys 247(1):1–11

    Article  CAS  PubMed  Google Scholar 

  • Fridovich I (1986b) Superoxide dismutases. Adv Enzymol Relat Areas Mol Biol 58(6):61–97

    CAS  PubMed  Google Scholar 

  • Fukuda A, Nakamura A, Tagiri A, Tanaka H, Miyao A, Hirochika H, Tanaka Y (2004) Function, intracellular localization and the importance in salt tolerance of a vacuolar Na+/H+ antiporter from rice. Plant Cell Physiol 45(2):146–159

    Article  CAS  PubMed  Google Scholar 

  • Gama P, Inanaga S, Tanaka K, Nakazawa R (2007) Physiological response of common bean (Phaseolus vulgaris L.) seedlings to salinity stress. Afr J Biotechnol 6(2)

    Google Scholar 

  • Ganieva RA, Allahverdiyev SR, Guseinova NB, Kavakli HI, Nafisi S (1998) Effect of salt stress and synthetic hormone polystimuline K on the photosynthetic activity of cotton (Gossypium hirsutum). Turk J Bot 22(4):217–222

    Google Scholar 

  • Gao P, Bai X, Yang L, Lv D, Pan X, Li Y, Cai H, Ji W, Chen Q, Zhu Y (2011) osa-MIR393: a salinity-and alkaline stress-related microRNA gene. Mol Biol Rep 38(1):237–242

    Article  CAS  PubMed  Google Scholar 

  • Garg B, Gupta I (1997) Saline wastelands environment and plant growth. Scientific Publishers, Jodhpur

    Google Scholar 

  • Garratt LC, Janagoudar BS, Lowe KC, Anthony P, Power JB, Davey MR (2002) Salinity tolerance and antioxidant status in cotton cultures. Free Radic Biol Med 33(4):502–511

    Article  CAS  PubMed  Google Scholar 

  • Genc Y, Oldach K, Verbyla AP, Lott G, Hassan M, Tester M, Wallwork H, McDonald GK (2010) Sodium exclusion QTL associated with improved seedling growth in bread wheat under salinity stress. Theor Appl Genet 121(5):877–894

    Article  CAS  PubMed  Google Scholar 

  • Ghassemi-Golezani K, Taifeh-Noori M, Oustan S, Moghaddam M (2009) Response of soybean cultivars to salinity stress. J Food Agric Environ 7(2):401–404

    Google Scholar 

  • Glenn EP, Brown JJ, Blumwald E (1999) Salt tolerance and crop potential of halophytes. Crit Rev Plant Sci 18(2):227–255

    Article  Google Scholar 

  • Gomes-Filho E, Lima CRFM, Costa JH, da Silva ACM, Lima MGS, de Lacerda CF, Prisco JT (2008) Cowpea ribonuclease: properties and effect of NaCl-salinity on its activation during seed germination and seedling establishment. Plant Cell Rep 27(1):147–157

    Article  CAS  PubMed  Google Scholar 

  • Gorham J, Hardy C, Wyn Jones R, Joppa L, Law C (1987) Chromosomal location of a K/Na discrimination character in the D genome of wheat. TAG Theor Appl Genet 74(5):584–588

    Article  CAS  PubMed  Google Scholar 

  • Goswami S, Kumar RR, Rai RD (2014) Heat-responsive microRNAs regulate the transcription factors and heat shock proteins in modulating thermo-stability of starch biosynthesis enzymes in wheat ('Triticum aestivum L.) under the heat stress. Aust J Crop Sci 8(5):697

    CAS  Google Scholar 

  • Greenway H, Munns R (1980) Mechanisms of salt tolerance in nonhalophytes. Annu Rev Plant Physiol 31(1):149–190

    Article  CAS  Google Scholar 

  • Gueta-Dahan Y, Yaniv Z, Zilinskas BA, Ben-Hayyim G (1997) Salt and oxidative stress: similar and specific responses and their relation to salt tolerance in citrus. Planta 203(4):460–469

    Article  CAS  PubMed  Google Scholar 

  • Günes A, Inal A, Alpaslan M (1996) Effect of salinity on stomatal resistance, proline, and mineral composition of pepper. J Plant Nutr 19(2):389–396

    Article  Google Scholar 

  • Guan R, Qu Y, Guo Y, Yu L, Liu Y, Jiang J, Chen J, Ren Y, Liu G, Tian L, Jin L, Liu Z, Hong H, Chang R, Gilliham M, Qiu L (2014) Salinity tolerance in soybean is modulated by natural variation in GmSALT3. Plant J 80:937–950

    Google Scholar 

  • Gunes A, Inal A, Alpaslan M, Eraslan F, Bagci EG, Cicek N (2007) Salicylic acid induced changes on some physiological parameters symptomatic for oxidative stress and mineral nutrition in maize (Zea mays L.) grown under salinity. J Plant Physiol 164(6):728–736

    Article  CAS  PubMed  Google Scholar 

  • Gupta O, Sharma P, Gupta R, Sharma I (2014) MicroRNA mediated regulation of metal toxicity in plants: present status and future perspectives. Plant Mol Biol 84(1–2):1–18

    Article  CAS  PubMed  Google Scholar 

  • Ha E, Ikhajiagba B, Bamidele J, Ogic-Odia E (2008) Salinity effects on young healthy seedling of Kyllingia peruviana collected from escravos, Delta state. Glob J Environ Res 2(2):74–88

    Google Scholar 

  • Halliwell B (1982) The toxic effects of oxygen on plant tissues. Superoxide dismutase 1:89–123

    CAS  Google Scholar 

  • Halliwell B (1987) Oxidative damage, lipid peroxidation and antioxidant protection in chloroplasts. Chem Phys Lipids 44(2–4):327–340

    Article  CAS  Google Scholar 

  • Halliwell B, Gutteridge JM (1985) Free radicals in biology and medicine. Pergamon

    Google Scholar 

  • Halliwell B, Gutteridge JM (2015) Free radicals in biology and medicine. The Clarendon Press/Oxford University Press, New York

    Book  Google Scholar 

  • Hauser F, Horie T (2010) A conserved primary salt tolerance mechanism mediated by HKT transporters: a mechanism for sodium exclusion and maintenance of high K+/Na+ ratio in leaves during salinity stress. Plant Cell Environ 33(4):552–565

    Article  CAS  PubMed  Google Scholar 

  • Hernández JA, Almansa MS (2002) Short-term effects of salt stress on antioxidant systems and leaf water relations of pea leaves. Physiol Plant 115(2):251–257

    Article  PubMed  Google Scholar 

  • Hernandez JA, Corpas FJ, Gomez M, Río LA, Sevilla F (1993) Salt-induced oxidative stress mediated by activated oxygen species in pea leaf mitochondria. Physiol Plant 89(1):103–110

    Article  CAS  Google Scholar 

  • Hernandez JA, Olmos E, Corpas FJ, Sevilla F, Del Rio LA (1995) Salt-induced oxidative stress in chloroplasts of pea plants. Plant Sci 105:151–167

    Google Scholar 

  • Hernández JA, Ferrer MA, Jiménez A, Barceló AR, Sevilla F (2001) Antioxidant systems and O2.−/H2O2 production in the apoplast of pea leaves. Its relation with salt-induced necrotic lesions in minor veins. Plant Physiol 127(3):817–831

    Article  PubMed  PubMed Central  Google Scholar 

  • Horie T, Motoda J, Kubo M, Yang H, Yoda K, Horie R, Chan WY, Leung HY, Hattori K, Konomi M (2005) Enhanced salt tolerance mediated by AtHKT1 transporter-induced Na+ unloading from xylem vessels to xylem parenchyma cells. Plant J 44(6):928–938

    Article  PubMed  CAS  Google Scholar 

  • Houimli SIM, Denden M, El Hadj SB (2008) Induction of salt tolerance in pepper (Capsicum annuum) by 24-epibrassinolide. Eur Asian J BioSciences 2:83–90

    Google Scholar 

  • Howat D (2000) Acceptable salinity, sodicity and pH values for boreal forest reclamation. Environmental Sciences Division

    Google Scholar 

  • Hsiao TC, Xu LK (2000) Sensitivity of growth of roots versus leaves to water stress: biophysical analysis and relation to water transport. J Exp Bot 51:1595–1616

    Article  CAS  PubMed  Google Scholar 

  • Huang J, Redmann R (1995) Salt tolerance of Hordeum and Brassica species during germination and early seedling growth. Can J Plant Sci 75(4):815–819

    Article  Google Scholar 

  • Ikbal FE, Hernández JA, Barba-Espín G, Koussa T, Aziz A, Faize M, Diaz-Vivancos P (2014) Enhanced salt-induced antioxidative responses involve a contribution of polyamine biosynthesis in grapevine plants. J Plant Physiol 171(10):779–788

    Article  CAS  PubMed  Google Scholar 

  • Imlay JA, Linn S (1988) DNA damage and oxygen radical toxicity. Science 240(4857):1302

    Article  CAS  PubMed  Google Scholar 

  • Ingram J, Bartels D (1996) The molecular basis of dehydration tolerance in plants. Annu Rev Plant Biol 47(1):377–403

    Article  CAS  Google Scholar 

  • Inzé D, Van Montagu M (1995) Oxidative stress in plants. Curr Opin Biotechnol 6(2):153–158

    Article  Google Scholar 

  • Isla R, Aragüés R, Royo A (1998) Validity of various physiological traits as screening criteria for salt tolerance in barley. Field Crop Res 58(2):97–107

    Article  Google Scholar 

  • Jafarzadeh AA, Aliasgharzad N (2007) Salinity and salt composition effects on seed germination and root length of four sugar beet cultivars. Biologia 62(5):562–564

    Article  Google Scholar 

  • James RA, Rivelli AR, Munns R, von Caemmerer S (2002) Factors affecting CO2 assimilation, leaf injury and growth in salt-stressed durum wheat. Funct Plant Biol 29(12):1393–1403

    Article  CAS  Google Scholar 

  • James RA, Davenport RJ, Munns R (2006) Physiological characterization of two genes for Na+ exclusion in durum wheat, Nax1 and Nax2. Plant Physiol 142(4):1537–1547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • James RA, Blake C, Byrt CS, Munns R (2011) Major genes for Na+ exclusion, Nax1 and Nax2 (wheat HKT1; 4 and HKT1; 5), decrease Na+ accumulation in bread wheat leaves under saline and waterlogged conditions. J Exp Bot 62(8):2939–2947

    Article  CAS  PubMed  Google Scholar 

  • Jamil M, Lee CC, Rehman SU, Lee DB, Ashraf M, Rha ES (2005) Salinity (NaCl) tolerance of Brassica species at germination and early seedling growth. Elec J Env Agricult Food Chem Title 4(4):970–976

    CAS  Google Scholar 

  • Jamil M, Rehman S, Rha E (2007) Salinity effect on plant growth, PSII photochemistry and chlorophyll content in sugar beet (Beta Vulgaris L.) and cabbage (Brassica Oleracea Capitata L.) Pak J Bot 39(3):753–760

    Google Scholar 

  • Kalaji M, Guo P (2008) Chlorophyll fluorescence: a useful tool in barley plant breeding programs. Photochemistry Res Prog:439–463

    Google Scholar 

  • Kalaji H, Nalborczyk E (1991) Gas exchange of barley seedlings growing under salinity stress. Photosynthetica 25(2):197–202

    Google Scholar 

  • Kalaji HM, Pietkiewicz S (1993) Salinity effects on plant growth and other physiological processes. Acta Physiol Plant 15(2):89–124

    Google Scholar 

  • Kangasjärvi S, Neukermans J, Li S, Aro E-M, Noctor G (2012) Photosynthesis, photorespiration, and light signalling in defence responses. J Exp Bot:err402

    Google Scholar 

  • Karahara I, Ikeda A, Kondo T, Uetake Y (2004) Development of the Casparian strip in primary roots of maize under salt stress. Planta 219(1):41–47

    Article  CAS  PubMed  Google Scholar 

  • Kataria S, Baghel L, Guruprasad K (2017) Alleviation of adverse effects of ambient UV stress on growth and some potential physiological attributes in soybean (Glycine max) by seed pre-treatment with static magnetic field. J Plant Growth Regul:1–16

    Google Scholar 

  • Kaveh H, Nemati H, Farsi M, Jartoodeh SV (2011) How salinity affect germination and emergence of tomato lines. J Biol Environ Sci 5(15)

    Google Scholar 

  • Kawasaki S, Borchert C, Deyholos M, Wang H, Brazille S, Kawai K, Galbraith D, Bohnert HJ (2001) Gene expression profiles during the initial phase of salt stress in rice. Plant Cell 13(4):889–905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khajeh-Hosseini M, Powell A, Bingham I (2003) The interaction between salinity stress and seed vigour during germination of soyabean seeds. Seed Sci Technol 31(3):715–725

    Article  Google Scholar 

  • Khan MA, Rizvi Y (1994) Effect of salinity, temperature, and growth regulators on the germination and early seedling growth of Atriplex griffithii var. stocksii. Can J Bot 72(4):475–479

    Article  Google Scholar 

  • Khan MA, Weber DJ (2006) Ecophysiology of high salinity tolerant plants, vol 40. Springer Science & Business Media, New York

    Book  Google Scholar 

  • Khan MA, Ungar IA, Showalter AM, Dewald HD (1998) NaCl-induced accumulation of glycinebetaine in four subtropical halophytes from Pakistan. Physiol Plant 102(4):487–492

    Article  CAS  Google Scholar 

  • Khan MA, Ahmed MZ, Hameed A (2006) Effect of sea salt and L-ascorbic acid on the seed germination of halophytes. J Arid Environ 67(3):535–540

    Article  Google Scholar 

  • Khodarahmpour Z, Ifar M, Motamedi M (2012) Effects of NaCl salinity on maize (Zea mays L.) at germination and early seedling stage. Afr J Biotechnol 11(2):298–304

    CAS  Google Scholar 

  • Kim JY, Kwak KJ, Jung HJ, Lee HJ, Kang H (2010) MicroRNA402 affects seed germination of Arabidopsis thaliana under stress conditions via targeting DEMETER-LIKE Protein3 mRNA. Plant Cell Physiol 51(6):1079–1083

    Article  CAS  PubMed  Google Scholar 

  • Krishnamurthy A, Rathinasabapathi B (2013) Oxidative stress tolerance in plants: novel interplay between auxin and reactive oxygen species signaling. Plant Signaling & Behavior 8(10):e25761

    Article  CAS  Google Scholar 

  • Larcher W (2003) Physiological plant ecology: ecophysiology and stress physiology of functional groups. Springer Science & Business Media/Springer/Springer‐Verlag, Berlin/Heidelberg/New York

    Google Scholar 

  • Läuchli A, James RA, Huang CX, McCully M, Munns R (2008) Cell-specific localization of Na+ in roots of durum wheat and possible control points for salt exclusion. Plant Cell Environ 31(11):1565–1574

    Article  PubMed  CAS  Google Scholar 

  • Lee DH, Kim YS, Lee CB (2001) The inductive responses of the antioxidant enzymes by salt stress in the rice (Oryza sativa L.) J Plant Physiol 158(6):737–745

    Article  CAS  Google Scholar 

  • Lee MH, Cho EJ, Wi SG, Bae H, Kim JE, Cho J-Y, Lee S, Kim J-H, Chung BY (2013) Divergences in morphological changes and antioxidant responses in salt-tolerant and salt-sensitive rice seedlings after salt stress. Plant Physiol Biochem 70:325–335

    Article  CAS  PubMed  Google Scholar 

  • Liang G, Yang F, Yu D (2010) MicroRNA395 mediates regulation of sulfate accumulation and allocation in Arabidopsis thaliana. Plant J 62(6):1046–1057

    CAS  PubMed  Google Scholar 

  • Lin CC, Kao CH (1995) NaCl stress in rice seedlings: starch mobilization and the influence of gibberellic acid on seedling growth. Botanical Bull Academia Sinica 36

    Google Scholar 

  • Liu H-H, Tian X, Li Y-J, Wu C-A, Zheng C-C (2008) Microarray-based analysis of stress-regulated microRNAs in Arabidopsis thaliana. RNA 14(5):836–843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu R, Sun W, Chao M, C-J JI, Wang M, YE B-P (2009) Leaf anatomical changes of Bruguiera gymnorrhiza seedlings under salt stress. J Trop Subtropical Bot 2:012

    Google Scholar 

  • Liu Y, Yu L, Qu Y, Chen J, Liu X, Hong H, Liu Z, Chang R, Gilliham M, Qiu L, Guan R (2016) GmSALT3, which confers improved soybean salt tolerance in the field, increases leaf Cl exclusion prior to Na+ exclusion but does not improve early vigor under salinity. Front Plant Sci 7:1485-1–1485-14

    Google Scholar 

  • Long R, Li M, Zhang T, Kang J, Sun Y, Cong L, Gao Y, Liu F, Yang Q (2016) Comparative proteomic analysis reveals differential root proteins in Medicago sativa and Medicago truncatula in response to salt stress. Front Plant Sci 7

    Google Scholar 

  • Longstreth DJ, Nobel PS (1979) Salinity effects on leaf anatomy consequences for photosynthesis. Plant Physiol 63(4):700–703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maggio A, Hasegawa PM, Bressan RA, Consiglio MF, Joly RJ (2001) Review: unravelling the functional relationship between root anatomy and stress tolerance. Funct Plant Biol 28(10):999–1004

    Article  Google Scholar 

  • Maggio A, Raimondi G, Martino A, De Pascale S (2007) Salt stress response in tomato beyond the salinity tolerance threshold. Environ Exp Bot 59(3):276–282

    Article  CAS  Google Scholar 

  • Mahajan S, Tuteja N (2005) Cold, salinity and drought stresses: an overview. Arch Biochem Biophys 444(2):139–158

    Article  CAS  PubMed  Google Scholar 

  • Mansour M, Salama K, Al-Mutawa M, Abou Hadid A (2002) Effect of NaCl and polyamines on plasma membrane lipids of wheat roots. Biol Plant 45(2):235–239

    Article  CAS  Google Scholar 

  • Marschner H, Rimmington G (1988) Mineral nutrition of higher plants. Plant Cell Environ 11:147–148

    Google Scholar 

  • Martínez-Atienza J, Jiang X, Garciadeblas B, Mendoza I, Zhu J-K, Pardo JM, Quintero FJ (2007) Conservation of the salt overly sensitive pathway in rice. Plant Physiol 143(2):1001–1012

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mass EV (1990) Crop salt tolerance. Chapter 13, P. 262–304. In: Tanji KK (ed) Agricultural salinity assessment and management. ASCE Manuals and Reports on Engineering No. 71, American Society of Civil Engineers, New York

    Google Scholar 

  • Mathur N, Singh J, Bohra S, Bohra A, Vyas A (2006) Biomass production, productivity and physiological changes in moth bean genotypes at different salinity levels. Am J Plant Physiol 1(2):210–213

    Article  Google Scholar 

  • Maxwell K, Johnson GN (2000) Chlorophyll fluorescence—a practical guide. J Exp Bot 51(345):659–668

    Article  CAS  PubMed  Google Scholar 

  • Meloni D, Gulotta M, Martinez C (2008) Salinity tolerance in Schinopsis quebracho colorado: seed germination, growth, ion relations and metabolic responses. J Arid Environ 72(10):1785–1792

    Article  Google Scholar 

  • Memon SA, Hou X, Wang LJ (2010) Morphlogical analysis of salt stress response of pak choi. Elec J Env Agric Food Chem 9(1)

    Google Scholar 

  • Meneguzzo S, Sgherri CL, Navari-Izzo F, Izzo R (1998) Stromal and thylakoid-bound ascorbate peroxidases in NaCl-treated wheat. Physiol Plant 104(4):735–740

    Article  CAS  Google Scholar 

  • Meyer G, Schmitt JM, Bohnert HJ (1990) Direct screening of a small genome: estimation of the magnitude of plant gene expression changes during adaptation to high salt. Mol Gen Genet MGG 224(3):347–356

    Article  CAS  PubMed  Google Scholar 

  • Mian A, Oomen RJ, Isayenkov S, Sentenac H, Maathuis FJ, Véry AA (2011) Over-expression of an Na+−and K+−permeable HKT transporter in barley improves salt tolerance. Plant J 68(3):468–479

    Article  CAS  PubMed  Google Scholar 

  • Miransari M, Smith D (2007) Overcoming the stressful effects of salinity and acidity on soybean nodulation and yields using signal molecule genistein under field conditions. J Plant Nutr 30(12):1967–1992

    Article  CAS  Google Scholar 

  • Miransari M, Smith D (2009) Alleviating salt stress on soybean (Glycine max (L.) Merr.)–Bradyrhizobium japonicum symbiosis, using signal molecule genistein. Eur J Soil Biol 45(2):146–152

    Article  CAS  Google Scholar 

  • Mitsuya S, Takeoka Y, Miyake H (2000) Effects of sodium chloride on foliar ultrastructure of sweet potato (Ipomoea batatas Lam.) plantlets grown under light and dark conditions in vitro. J Plant Physiol 157(6):661–667

    Article  CAS  Google Scholar 

  • Mittova V, Tal M, Volokita M, Guy M (2003) Up-regulation of the leaf mitochondrial and peroxisomal antioxidative systems in response to salt-induced oxidative stress in the wild salt-tolerant tomato species Lycopersicon pennellii. Plant Cell Environ 26(6):845–856

    Article  CAS  PubMed  Google Scholar 

  • Moradi F, Ismail AM (2007) Responses of photosynthesis, chlorophyll fluorescence and ROS-scavenging systems to salt stress during seedling and reproductive stages in rice. Ann Bot 99(6):1161–1173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Munns R (1992) A leaf elongation assay detects an unknown growth inhibitor in xylem sap from wheat and barley. Funct Plant Biol 19(2):127–135

    Google Scholar 

  • Munns R (1993) Physiological processes limiting plant growth in saline soils: some dogmas and hypotheses. Plant Cell Environ 16(1):15–24

    Article  CAS  Google Scholar 

  • Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25(2):239–250

    Article  CAS  PubMed  Google Scholar 

  • Munns R, Gilliham M (2015) Salinity tolerance of crops–what is the cost? New Phytol 208(3):668–673

    Article  CAS  PubMed  Google Scholar 

  • Munns R, Rawson H (1999) Effect of salinity on salt accumulation and reproductive development in the apical meristem of wheat and barley. Funct Plant Biol 26(5):459–464

    Google Scholar 

  • Munns R, Termaat A (1986) Whole-plant responses to salinity. Funct Plant Biol 13(1):143–160

    Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  • Munns R, Rebetzke GJ, Husain S, James RA, Hare RA (2003) Genetic control of sodium exclusion in durum wheat. Crop Pasture Sci 54(7):627–635

    Article  CAS  Google Scholar 

  • Munns R, James RA, Läuchli A (2006) Approaches to increasing the salt tolerance of wheat and other cereals. J Exp Bot 57(5):1025–1043

    Article  CAS  PubMed  Google Scholar 

  • Murat C, Zampieri E, Vizzini A, Bonfante P (2008) Is the Perigord black truffle threatened by an invasive species? We dreaded it and it has happened! New Phytol 178(4):699–702

    Article  PubMed  Google Scholar 

  • Mustard J, Renault S (2006) Response of red-osier dogwood (Cornus sericea) seedlings to NaCl during the onset of bud break. Botany 84(5):844–851

    Google Scholar 

  • Netondo GW, Onyango JC, Beck E (2004) Sorghum and salinity. Crop Sci 44(3):797–805

    Article  CAS  Google Scholar 

  • Niazi B, Athar M, Salim M, Rozema J (2005) Growth and ionic relations of fodderbeet and seabeet under saline environments. Int J Environ Sci Technol 2(2):113–120

    Article  CAS  Google Scholar 

  • Niazi A, Ramezani A, Dinari A (2014) GSTF1 gene expression analysis in cultivated wheat plants under salinity and ABA treatments. Mol Biol Res Commun 3(1):9

    CAS  PubMed  PubMed Central  Google Scholar 

  • Niu X, Zhu J-K, Narasimhan ML, Bressan RA, Hasegawa PM (1993) Plasma-membrane H+-ATPase gene expression is regulated by NaCl in cells of the halophyte Atriplex nummularia L. Planta 190(4):433–438

    Article  CAS  PubMed  Google Scholar 

  • Ochiai K, Matoh T (2002) Characterization of the Na+ delivery from roots to shoots in rice under saline stress: excessive salt enhances apoplastic transport in rice plants. Soil Sci Plant Nutr 48(3):371–378

    Article  CAS  Google Scholar 

  • Oh D-H, Lee SY, Bressan RA, Yun D-J, Bohnert HJ (2010) Intracellular consequences of SOS1 deficiency during salt stress. J Exp Bot 61(4):1205–1213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Othman Y, Al-Karaki G, Al-Tawaha A, Al-Horani A (2006) Variation in germination and ion uptake in barley genotypes under salinity conditions. World J Agric Sci 2(1):11–15

    Google Scholar 

  • Parida AK, Das AB (2004) Effects of NaCl stress on nitrogen and phosphorous metabolism in a true mangrove Bruguiera parviflora grown under hydroponic culture. J Plant Physiol 161(8):921–928

    Article  CAS  PubMed  Google Scholar 

  • Parida AK, Das AB (2005) Salt tolerance and salinity effects on plants: a review. Ecotoxicol Environ Saf 60(3):324–349

    Article  CAS  PubMed  Google Scholar 

  • Parida A, Das AB, Das P (2002) NaCl stress causes changes in photosynthetic pigments, proteins, and other metabolic components in the leaves of a true mangrove, Bruguiera parviflora, in hydroponic cultures. J Plant Biol 45(1):28–36

    Article  CAS  Google Scholar 

  • Parida AK, Das A, Mittra B (2004) Effects of salt on growth, ion accumulation, photosynthesis and leaf anatomy of the mangrove, Bruguiera parviflora. Trees 18(2):167–174

    Article  CAS  Google Scholar 

  • Parker MB, Gascho G, Gaines T (1983) Chloride toxicity of soybeans grown on Atlantic coast flatwoods soils. Agron J 75(3):439–443

    Article  CAS  Google Scholar 

  • Pasapula V, Shen G, Kuppu S, Paez-Valencia J, Mendoza M, Hou P, Chen J, Qiu X, Zhu L, Zhang X (2011) Expression of an Arabidopsis vacuolar H+−pyrophosphatase gene (AVP1) in cotton improves drought-and salt tolerance and increases fibre yield in the field conditions. Plant Biotechnol J 9(1):88–99

    Article  CAS  PubMed  Google Scholar 

  • Passioura J (1988) Water transport in and to roots. Annu Rev Plant Physiol Plant Mol Biol 39(1):245–265

    Article  Google Scholar 

  • Pi E, Qu L, Hu J, Huang Y, Qiu L, Lu H, Jiang B, Liu C, Peng T, Zhao Y (2016) Mechanisms of soybean roots' tolerances to salinity revealed by proteomic and phosphoproteomic comparisons between two cultivars. Mol Cell Proteomics 15(1):266–288

    Article  CAS  PubMed  Google Scholar 

  • Poljakoff-Mayber A, Somers G, Werker E, Gallagher J (1994) Seeds of Kosteletzkya virginica (Malvaceae): their structure, germination, and salt tolerance. II. Germination and salt tolerance. Am J Bot:54–59

    Google Scholar 

  • Popova LP, Stoinova ZG, Maslenkova LT (1995) Involvement of abscisic acid in photosynthetic process in Hordeum vulgare L. during salinity stress. J Plant Growth Regul 14(4):211

    Article  CAS  Google Scholar 

  • Popova OV, Ismailov SF, Popova TN, Dietz K-J, Golldack D (2002) Salt-induced expression of NADP-dependent isocitrate dehydrogenase and ferredoxin-dependent glutamate synthase in Mesembryanthemum crystallinum. Planta 215(6):906–913

    Article  CAS  PubMed  Google Scholar 

  • Prasad S, Bagali P, Hittalmani S, Shashidhar H (2000) Molecular mapping of quantitative trait loci associated with seedling tolerance to salt stress in rice (Oryza sativa L.) Curr Sci 78(2):162–164

    CAS  Google Scholar 

  • Qiu Q-S, Guo Y, Dietrich MA, Schumaker KS, Zhu J-K (2002) Regulation of SOS1, a plasma membrane Na+/H+ exchanger in Arabidopsis thaliana, by SOS2 and SOS3. Proc Natl Acad Sci 99(12):8436–8441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quintero FJ, Martinez-Atienza J, Villalta I, Jiang X, Kim W-Y, Ali Z, Fujii H, Mendoza I, Yun D-J, Zhu J-K (2011) Activation of the plasma membrane Na/H antiporter Salt-Overly-Sensitive 1 (SOS1) by phosphorylation of an auto-inhibitory C-terminal domain. Proc Natl Acad Sci 108(6):2611–2616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rahnama A, James RA, Poustini K, Munns R (2010) Stomatal conductance as a screen for osmotic stress tolerance in durum wheat growing in saline soil. Funct Plant Biol 37(3):255–263

    Article  Google Scholar 

  • Rameeh V, Cherati A, Abbaszadeh F (2012) Salinity effects on yield, yield components and nutrient ions in rapeseed genotypes. J Agric Sci Belgrade 57(1):19–29

    Article  Google Scholar 

  • Ranathunge K, Shao S, Qutob D, Gijzen M, Peterson CA, Bernards MA (2010) Properties of the soybean seed coat cuticle change during development. Planta 231(5):1171–1188

    Article  CAS  PubMed  Google Scholar 

  • Rao D, Giller K, Yeo A, Flowers T (2002) The effects of salinity and sodicity upon nodulation and nitrogen fixation in chickpea (Cicer arietinum). Ann Bot 89(5):563–570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raul L-A, Andres O-C, Armando L-A, Bernardo M-A, Enrique T-D (2003) Response to salinity of three grain legumes for potential cultivation in arid areas. Soil Sci Plant Nutr 49(3):329–336

    Article  Google Scholar 

  • Redondo-Gómez S, Mateos-Naranjo E, Davy AJ, Fernández-Muñoz F, Castellanos EM, Luque T, Figueroa ME (2007) Growth and photosynthetic responses to salinity of the salt-marsh shrub Atriplex portulacoides. Ann Bot 100(3):555–563

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ren Z-H, Gao J-P, Li L-G, Cai X-L, Huang W, Chao D-Y, Zhu M-Z, Wang Z-Y, Luan S, Lin H-X (2005) A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nat Genet 37(10):1141–1146

    Article  CAS  PubMed  Google Scholar 

  • Rengasamy P, Olsson K (1993) Irrigation and sodicity. Soil Res 31(6):821–837

    Article  CAS  Google Scholar 

  • Rodrıguez P, Torrecillas A, Morales M, Ortuno M, Sánchez-Blanco M (2005) Effects of NaCl salinity and water stress on growth and leaf water relations of Asteriscus maritimus plants. Environ Exp Bot 53(2):113–123

    Article  CAS  Google Scholar 

  • Romero-Aranda R, Soria T, Cuartero J (2001) Tomato plant-water uptake and plant-water relationships under saline growth conditions. Plant Sci 160(2):265–272

    Article  CAS  PubMed  Google Scholar 

  • Roppolo D, De Rybel B, Tendon VD, Pfister A, Alassimone J, Vermeer JE, Yamazaki M, Stierhof Y-D, Beeckman T, Geldner N (2011) A novel protein family mediates Casparian strip formation in the endodermis. Nature 473(7347):380–383

    Article  CAS  PubMed  Google Scholar 

  • Roxas VP, Lodhi SA, Garrett DK, Mahan JR, Allen RD (2000) Stress tolerance in transgenic tobacco seedlings that overexpress glutathione S-transferase/glutathione peroxidase. Plant Cell Physiol 41(11):1229–1234

    Article  CAS  PubMed  Google Scholar 

  • Ruiz-Sánchez MC, Domingo R, Torrecillas A, Pérez-Pastor A (2000) Water stress preconditioning to improve drought resistance in young apricot plants. Plant Sci 156(2):245–251

    Article  PubMed  Google Scholar 

  • Saffan E (2008) Effect of salinity and osmotic stresses on some economic plants. Res J Agric Biol Sci 4(2):159–166

    CAS  Google Scholar 

  • Santos CV, Falcão IP, Pinto GC, Oliveira H, Loureiro J (2002) Nutrient responses and glutamate and proline metabolism in sunflower plants and calli under Na2SO4 stress. J Plant Nutr Soil Sci 165(3):366–372

    Article  CAS  Google Scholar 

  • Saqib M, Zörb C, Schubert S (2006) Salt-resistant and salt-sensitive wheat genotypes show similar biochemical reaction at protein level in the first phase of salt stress. Zeits Pflanzenernahr Bodenkunde-Journ Plant Nutrit. Soil Sci 169(4):542–548

    CAS  Google Scholar 

  • Schuch UK, Kelly JJ (2008) Salinity tolerance of cacti and succulents. Turfgrass, Landscape and Urban IPM Research Summary

    Google Scholar 

  • Seemann JR, Critchley C (1985) Effects of salt stress on the growth, ion content, stomatal behaviour and photosynthetic capacity of a salt-sensitive species, Phaseolus vulgaris L. Planta 164(2):151–162

    Article  CAS  PubMed  Google Scholar 

  • Serraj R, Vasquez-Diaz H, Drevon J (1998) Effects of salt stress on nitrogen fixation, oxygen diffusion, and ion distribution in soybean, common bean, and alfalfa. J Plant Nutr 21(3):475–488

    Article  CAS  Google Scholar 

  • Serraj R, Vasquez-Diaz H, Hernandez G, Drevon J-J (2001) Genotypic difference in the short-term response of nitrogenase activity (C2H2 reduction) to salinity and oxygen in the common bean. Agronomie 21(6–7):645–651

    Article  Google Scholar 

  • Shalata A, Neumann PM (2001) Exogenous ascorbic acid (vitamin C) increases resistance to salt stress and reduces lipid peroxidation. J Exp Bot 52(364):2207–2211

    Article  CAS  PubMed  Google Scholar 

  • Shannon MC, Grieve CM, Francois LE (1994) Whole-plant response to salinity. Plant-Environ Interact:199–244

    Google Scholar 

  • Shao H-B, Guo Q-J, Chu L-Y, Zhao X-N, Su Z-L, Hu Y-C, Cheng J-F (2007) Understanding molecular mechanism of higher plant plasticity under abiotic stress. Colloids Surf B: Biointerfaces 54(1):37–45

    Article  CAS  PubMed  Google Scholar 

  • Sharma T, Sen D (1989) A new report on abnormally fast germinating seeds of Haloxylon spp. An ecological adaptation to saline habitat. Curr Sci Bangalore 58(7):382–385

    Google Scholar 

  • Sharma P, Prashat GR, Kumar A, Mann A (2016) Physiological and molecular insights into mechanisms for salt tolerance in plants. In: Innovative saline agriculture. Springer, pp 321–349

    Google Scholar 

  • Shen C-X, Zhang Q-F, Li J, Bi F-C, Yao N (2010) Induction of programmed cell death in Arabidopsis and rice by single-wall carbon nanotubes. Am J Bot 97(10):1602–1609

    Article  CAS  PubMed  Google Scholar 

  • Shereen A, Ansari R, Soomro A (2001) Salt tolerance in soybean (Glycine max L.): effect on growth and ion relations. Pak J Bot 33(4):393–402

    Google Scholar 

  • Shi H, Ishitani M, Kim C, Zhu J-K (2000) The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. Proc Natl Acad Sci 97(12):6896–6901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi H, Quintero FJ, Pardo JM, Zhu J-K (2002) The putative plasma membrane Na+/H+ antiporter SOS1 controls long-distance Na+ transport in plants. Plant Cell 14(2):465–477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shinwari ZK, Nakashima K, Miura S, Kasuga M, Seki M, Yamaguchi-Shinozaki K, Shinozaki K (1998) An Arabidopsis gene family encoding DRE/CRT binding proteins involved in low-temperature-responsive gene expression. Biochem Biophys Res Commun 250(1):161–170

    Article  CAS  PubMed  Google Scholar 

  • Shriram V, Kumar V, Devarumath RM, Khare TS, Wani SH (2016) MicroRNAs as potential targets for abiotic stress tolerance in plants. Front Plant Sci 7:817

    Article  PubMed  PubMed Central  Google Scholar 

  • Shu S, Yuan L-Y, Guo S-R, Sun J, Yuan Y-H (2013) Effects of exogenous spermine on chlorophyll fluorescence, antioxidant system and ultrastructure of chloroplasts in Cucumis sativus L. under salt stress. Plant Physiol Biochem 63:209–216

    Article  CAS  PubMed  Google Scholar 

  • Silva P, Gerós H (2009) Regulation by salt of vacuolar H+-ATPase and H+−pyrophosphatase activities and Na+/H+ exchange. Plant Signal Behav 4(8):718–726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soussi M, Lluch C, Ocana A, Norero A (1999) Comparative study of nitrogen fixation and carbon metabolism in two chick-pea (Cicer arietinum L.) cultivars under salt stress. J Exp Bot 50(340):1701–1708

    Article  CAS  Google Scholar 

  • Srivastava A, Srivastava S, Lokhande V, D’souza S, Suprasanna P (2016) Salt stress reveals differential antioxidant and energetics responses in glycophyte (Brassicajuncea L.) and halophyte (Sesuvium portulacastrum L.). Front. Redox Homeostasis Managers in Plants under Environmental Stresses 3:20

    Google Scholar 

  • Steiger HM, Beck E, Beck R (1977) Oxygen concentration in isolated chloroplasts during photosynthesis. Plant Physiol 60(6):903–906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stepien P, Johnson GN (2009) Contrasting responses of photosynthesis to salt stress in the glycophyte Arabidopsis and the halophyte Thellungiella: role of the plastid terminal oxidase as an alternative electron sink. Plant Physiol 149(2):1154–1165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steppuhn H, Falk K, Zhou R (2010) Emergence, height, grain yield and oil content of camelina and canola grown in saline media. Can J Soil Sci 90(1):151–164

    Article  CAS  Google Scholar 

  • Steudle E (2000) Water uptake by roots: effects of water deficit. J Exp Bot 51(350):1531–1542

    Article  CAS  PubMed  Google Scholar 

  • Sun X, Xu L, Wang Y, Yu R, Zhu X, Luo X, Gong Y, Wang R, Limera C, Zhang K (2015) Identification of novel and salt-responsive miRNAs to explore miRNA-mediated regulatory network of salt stress response in radish (Raphanus sativus L.) BMC Genomics 16(1):197

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Szabolcs I (1994) Soils and salinization. In: Pessarakli M (ed) Handbook of plant and crop stress, Marcel Dekker, New York, pp 3–11

    Google Scholar 

  • Takeda S, Matsuoka M (2008) Genetic approaches to crop improvement: responding to environmental and population changes. Nat Rev Genet 9(6):444–457

    Google Scholar 

  • Tang X, Mu X, Shao H, Wang H, Brestic M (2015) Global plant-responding mechanisms to salt stress: physiological and molecular levels and implications in biotechnology. Crit Rev Biotechnol 35(4):425–437

    Article  PubMed  CAS  Google Scholar 

  • Tardieu F, Davies W (1993) Integration of hydraulic and chemical signalling in the control of stomatal conductance and water status of droughted plants. Plant Cell Environ 16(4):341–349

    Article  CAS  Google Scholar 

  • Tattini M, Gucci R, Coradeschi MA, Ponzio C, Everard JD (1995) Growth, gas exchange and ion content in Olea europaea plants during salinity stress and subsequent relief. Physiol Plant 95(2):203–210

    Article  CAS  Google Scholar 

  • Tavakkoli E, Fatehi F, Coventry S, Rengasamy P, McDonald GK (2011) Additive effects of Na+ and Cl–ions on barley growth under salinity stress. J Exp Bot 62(6):2189–2203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tester M, Davenport R (2003) Na+ tolerance and Na+ transport in higher plants. Ann Bot 91(5):503–527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsugane K, Kobayashi K, Niwa Y, Ohba Y, Wada K, Kobayashi H (1999) A recessive Arabidopsis mutant that grows photoautotrophically under salt stress shows enhanced active oxygen detoxification. Plant Cell 11(7):1195–1206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turan MA, Katkat V, Taban S (2007) Salinity-induced stomatal resistance, proline, chlorophyll and ion concentrations of bean. Int J Agric Res 2(5):483–488

    Article  CAS  Google Scholar 

  • Valiollah R (2013) Effect of salinity stress on yield, component characters and nutrient compositions in rapeseed (Brassica napus L.) genotypes. Agric Trop Subtrop 46(2):58–63

    Google Scholar 

  • Vamerali T, Saccomani M, Bona S, Mosca G, Guarise M, Ganis A (2003) A comparison of root characteristics in relation to nutrient and water stress in two maize hybrids. In: Roots: the dynamic interface between plants and the earth. Springer, pp 157–167

    Google Scholar 

  • Van Hoorn J, Katerji N, Hamdy A, Mastrorilli M (2001) Effect of salinity on yield and nitrogen uptake of four grain legumes and on biological nitrogen contribution from the soil. Agric Water Manag 51(2):87–98

    Article  Google Scholar 

  • Walker R, Sedgley M, Blesing M, Douglas T (1984) Anatomy, ultrastructure and assimilate concentrations of roots of citrus genotypes differing in ability for salt exclusion. J Exp Bot 35(10):1481–1494

    Article  CAS  Google Scholar 

  • Wang D, Shannon M (1999) Emergence and seedling growth of soybean cultivars and maturity groups under salinity. Plant Soil 214(1):117–124

    Article  CAS  Google Scholar 

  • Wang L, Zhao H, Chen D, Li L, Sun H, Lou Y, Gao Z (2016) Characterization and primary functional analysis of a bamboo NAC gene targeted by miR164b. Plant Cell Rep 35(6):1371–1383

    Article  CAS  PubMed  Google Scholar 

  • Welbaum GE, Tissaoui T, Bradford KJ (1990) Water relations of seed development and germination in muskmelon (Cucumis melo L.) III. Sensitivity of germination to water potential and abscisic acid during development. Plant Physiol 92(4):1029–1037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wise RR, Naylor AW (1987) Chilling-enhanced photooxidation evidence for the role of singlet oxygen and superoxide in the breakdown of pigments and endogenous antioxidants. Plant Physiol 83(2):278–282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu S-J, Ding L, Zhu J-K (1996) SOS1, a genetic locus essential for salt tolerance and potassium acquisition. Plant Cell 8(4):617–627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu C-A, Yang G-D, Meng Q-W, Zheng C-C (2004) The cotton GhNHX1 gene encoding a novel putative tonoplast Na+/H+ antiporter plays an important role in salt stress. Plant Cell Physiol 45(5):600–607

    Article  CAS  PubMed  Google Scholar 

  • Xu D, Duan X, Wang B, Hong B, Ho T-HD, Wu R (1996) Expression of a late embryogenesis abundant protein gene, HVA1, from barley confers tolerance to water deficit and salt stress in transgenic rice. Plant Physiol 110(1):249–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu S, Hu B, He Z, Ma F, Feng J, Shen W, Yang J (2011) Enhancement of salinity tolerance during rice seed germination by presoaking with hemoglobin. Int J Mol Sci 12(4):2488–2501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xue D, Huang Y, Zhang X, Wei K, Westcott S, Li C, Chen M, Zhang G, Lance R (2009) Identification of QTLs associated with salinity tolerance at late growth stage in barley. Euphytica 169(2):187–196

    Article  Google Scholar 

  • Yadav R, Flowers T, Yeo A (1996) The involvement of the transpirational bypass flow in sodium uptake by high-and low-sodium-transporting lines of rice developed through intravarietal selection. Plant Cell Environ 19(3):329–336

    Article  CAS  Google Scholar 

  • Yamaguchi T, Blumwald E (2005) Developing salt-tolerant crop plants: challenges and opportunities. Trends Plant Sci 10(12):615–620

    Article  CAS  PubMed  Google Scholar 

  • Yang Q, Chen Z-Z, Zhou X-F, Yin H-B, Li X, Xin X-F, Hong X-H, Zhu J-K, Gong Z (2009) Overexpression of SOS (Salt Overly Sensitive) genes increases salt tolerance in transgenic Arabidopsis. Mol Plant 2(1):22–31

    Article  CAS  PubMed  Google Scholar 

  • Yasuta Y, Kokubun M (2014) Salinity tolerance of super-nodulating soybean genotype En-b0-1. Plant Production Science 17(1):32–40

    Article  Google Scholar 

  • Yeo A, Yeo M, Flowers T (1987) The contribution of an apoplastic pathway to sodium uptake by rice roots in saline conditions. J Exp Bot 38(7):1141–1153

    Article  CAS  Google Scholar 

  • Yilmaz H, Kina A (2008) The influence of NaCl salinity on some vegetative and chemical changes of strawberries (Fragaria x ananssa L.) Afr J Biotechnol 7(18)

    Google Scholar 

  • Yousif S, Al-Saadawi I (1997) Effect of salinity and nitrogen fertilization on osmotic potential and elements accumulation in four genotypes of broad bean Vicia faba L. Dirasat Agric Sci 24:395–401

    Google Scholar 

  • Yupsanis T, Moustakas M, Eleftheriou P, Damianidou K (1994) Protein phosphorylation-dephosphorylation in alfalfa seeds germinating under salt stress. J Plant Physiol 143(2):234–240

    Article  CAS  Google Scholar 

  • Zekri M, Parsons LR (1989) Growth and root hydraulic conductivity of several citrus rootstocks under salt and polyethylene glycol stresses. Physiol Plant 77(1):99–106

    Article  Google Scholar 

  • Zhang B, Wang Q (2015) MicroRNA-based biotechnology for plant improvement. J Cell Physiol 230(1):1–15

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Han B, Wang T, Chen S, Li H, Zhang Y, Dai S (2011) Mechanisms of plant salt response: insights from proteomics. J Proteome Res 11(1):49–67

    Article  PubMed  CAS  Google Scholar 

  • Zhao G, Ma B, Ren C (2007) Growth, gas exchange, chlorophyll fluorescence, and ion content of naked oat in response to salinity. Crop Sci 47(1):123–131

    Article  CAS  Google Scholar 

  • Zhao G, Yu H, Liu M, Lu Y, Ouyang B (2017) Identification of salt-stress responsive microRNAs from Solanum lycopersicum and Solanum pimpinellifolium. Plant Growth Regul:1–12

    Google Scholar 

  • Zhu J-K (2000) Genetic analysis of plant salt tolerance using Arabidopsis. Plant Physiol 124(3):941–948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu J-K (2001a) Plant salt stress. In: eLS. John Wiley & Sons, Ltd. https://doi.org/10.1002/9780470015902.a0001300.pub2

  • Zhu J-K (2001b) Plant salt tolerance. Trends Plant Sci 6(2):66–71

    Article  CAS  PubMed  Google Scholar 

  • Zhu J-K, Liu J, Xiong L (1998) Genetic analysis of salt tolerance in Arabidopsis: evidence for a critical role of potassium nutrition. Plant Cell 10(7):1181–1191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zidan M, Elewa M (1995) Effect of salinity on germination, seedling growth and some metabolic changes in four plant species (Umbelliferae). Indian J Plant Physiol 38:57–61

    Google Scholar 

Download references

Acknowledgement

The financial support for this work was received from Innovate Mediscience to Dr. Verma S. and DST Women Scientists-A Scheme (SR/WOSA/ LS-17/2017(C)) to Dr. Kataria S. is thankfully acknowledged.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kataria, S., Verma, S.K. (2018). Salinity Stress Responses and Adaptive Mechanisms in Major Glycophytic Crops: The Story So Far. In: Kumar, V., Wani, S., Suprasanna, P., Tran, LS. (eds) Salinity Responses and Tolerance in Plants, Volume 1. Springer, Cham. https://doi.org/10.1007/978-3-319-75671-4_1

Download citation

Publish with us

Policies and ethics