Advertisement

Salinity Stress Responses and Adaptive Mechanisms in Major Glycophytic Crops: The Story So Far

  • Sunita Kataria
  • Sandeep Kumar Verma
Chapter

Abstract

In many areas of the world, salinity is a major abiotic stress-limiting growth and productivity of plants due to increasing use of poor quality of water for irrigation and soil salinisation. Various physiological traits, metabolic pathways and molecular or gene networks are involved in plant adaptation or tolerance to salinity stress. This chapter deals with the adaptive mechanisms that plants can employ to cope with the challenge of salt stress and provide updated overview of salt-tolerant mechanisms in major glycophytic crops with a particular interest in rice (Oryza sativa), soybean (Glycine max), wheat (Triticum aestivum) and Arabidopsis plants. Salt stress usually inhibits seed germination, seedling growth and vigour, biomass accumulation, flowering and fruit set in major glycophytic crops. In addition, elevated Na + levels in agricultural lands are increasingly becoming a serious threat to the world agriculture. Plants suffer osmotic and ionic stress under high salinity due to the salts accumulated at the outside of roots and those accumulated at the inside of the plant cells, respectively. Salinity stress significantly reduces growth and productivity of glycophytes, which are the majority of agricultural products. Plants tolerant to NaCl implement a series of adaptations to acclimate to salinity, including morphological, physiological, biochemical and molecular changes regulating plant adaptation and tolerance to salinity stress. These changes affect plant growth and development at different levels of plant organisation, e.g. they may reduce photosynthetic carbon gain and leaf growth rate and increase in the root/canopy ratio and in the chlorophyll content in addition to changes in the leaf anatomy that ultimately lead to preventing leaf ion toxicity, thus maintaining the water status in order to limit water loss and protect the photosynthesis process. Finally, we also provide an updated discussion on salt-induced oxidative stress at the subcellular level and its effect on the antioxidant machinery in major glycophyte crops plants. In response to salinity stress, the productions of ROS, such as singlet oxygen, superoxide, hydroxyl radical and hydrogen peroxide, are enhanced, and overexpression of genes leading to increased amounts and activities of antioxidant enzymes like superoxide dismutase (SOD), catalase (CAT) and glutathione-S-transferase (GST)/glutathione peroxidase (GPX) increases the performance of plants under stress. The molecular mechanism of stress tolerance is complex and requires information at the miRNA/omics level to understand it effectively. During abiotic stress conditions, the advancement of “omics” is providing a detailed fingerprint of proteins, transcripts or all metabolites upregulated or downregulated in plant cells. However, the regulatory mechanisms of these protein-coding genes are largely unknown; in this regard, the microRNAs (miRNAs) may prove extremely important in deciphering these gene regulatory mechanisms and the stress responses. Some miRNAs are functionally conserved across plant species and are regulated by salt stress. In major crops through transgenic technologies, miRNAs represent themselves as potent targets to engineer abiotic stress tolerance, due to the critical roles in post-transcriptional regulation of gene expression in response to salinity and resultant growth attenuation.

Keywords

Adaptive mechanisms Antioxidant activity Glycophytic plants Stress responses Salinity stress 

Abbreviations

·OH

Hydroxyl radical

CAT

Catalase

Ci

Intercellular CO2 concentration

ETR

Electron transport rate

GPX

Glutathione peroxidase

gs

Stomatal conductance

GST

Glutathione-S-transferase

H2O2

Hydrogen peroxide

ICDH

NADP-specific isocitrate dehydrogenase

MDA

Malondialdehyde

miRNA

microRNAs

N

Nitrogen

NRA

Nitrate reductase activity

O2

Superoxide

ROS

Reactive oxygen species

SOD

Superoxide dismutase

SOS

Salt overly sensitive signal pathway

SPAD

Soil and plant analyser development

Notes

Acknowledgement

The financial support for this work was received from Innovate Mediscience to Dr. Verma S. and DST Women Scientists-A Scheme (SR/WOSA/ LS-17/2017(C)) to Dr. Kataria S. is thankfully acknowledged.

References

  1. Abd EL-Samad HM, Komy HM, Shaddad MAK, Hetta AM (2005) Effect of molubdenum on nitrogenase and nitrate reductase activities of wheat inoculated with Azospirillium brasilense growth under drought stress. Gen Appl Plant Physiol 31(1–2):43–54Google Scholar
  2. Acosta-Motos J-R, Diaz-Vivancos P, Álvarez S, Fernández-García N, Sanchez-Blanco MJ, Hernández JA (2015) Physiological and biochemical mechanisms of the ornamental Eugenia myrtifolia L. plants for coping with NaCl stress and recovery. Planta 242(4):829–846PubMedCrossRefGoogle Scholar
  3. Acosta-Motos JR, Ortuño MF, Bernal-Vicente A, Diaz-Vivancos P, Sanchez-Blanco MJ, Hernandez JA (2017) Plant responses to salt stress: adaptive mechanisms. Agronomy 7(1):18CrossRefGoogle Scholar
  4. Adem GD, Roy SJ, Zhou M, Bowman JP, Shabala S (2014) Evaluating contribution of ionic, osmotic and oxidative stress components towards salinity tolerance in barley. BMC Plant Biol 14(1):113PubMedPubMedCentralCrossRefGoogle Scholar
  5. Ahmad P, Prasad MNV (2011a) Abiotic stress responses in plants: metabolism, productivity and sustainability. Springer, New York/Dordrecht/Heidelberg/LondonGoogle Scholar
  6. Ahmad P, Prasad MNV (2011b) Environmental adaptations and stress tolerance of plants in the era of climate change. Springer, New York/Dordrecht/Heidelberg/LondonGoogle Scholar
  7. Ahmed J, Bano M (1992) The effect of sodium-chloride on the physiology of cotyledons and mobilization of reserved food in cicer-arietinum. Pak J, Bot 24(1):40–48Google Scholar
  8. Akbarimoghaddam H, Galavi M, Ghanbari A, Panjehkeh N (2011) Salinity effects on seed germination and seedling growth of bread wheat cultivars. Trakia J Sci 9(1):43–50Google Scholar
  9. Akram NA, Jamil A (2007) Appraisal of physiological and biochemical selection criteria for evaluation of salt tolerance in canola (Brassica napus L.) Pak J Bot 39(5):1593–1608Google Scholar
  10. Alam R, Sazzadur Rahman M, Seraj ZI, Thomson MJ, Ismail AM, Tumimbang-Raiz E, Gregorio GB (2011) Investigation of seedling-stage salinity tolerance QTLs using backcross lines derived from Oryza sativa L. Pokkali. Plant Breed 130(4):430–437CrossRefGoogle Scholar
  11. Apse MP, Aharon GS, Snedden WA, Blumwald E (1999) Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis. Science 285(5431):1256–1258PubMedCrossRefGoogle Scholar
  12. Asada K (1987) Production and scavenging of active oxygen in photosynthesis. PhotoinhibitionGoogle Scholar
  13. Asada K (1992) Ascorbate peroxidase–a hydrogen peroxide-scavenging enzyme in plants. Physiol Plant 85(2):235–241CrossRefGoogle Scholar
  14. Ashraf M (2002) Exploitation of genetic variation for improvement of salt tolerance in spring wheat. In: Prospects for saline agriculture. Springer, New York/Dordrecht/Heidelberg/London, pp 113–121Google Scholar
  15. Ashraf M, Foolad M (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59(2):206–216CrossRefGoogle Scholar
  16. Ashraf M, Harris P (2013) Photosynthesis under stressful environments: an overview. Photosynthetica 51(2):163–190CrossRefGoogle Scholar
  17. Ashraf M, Wahid S (2000) Time-course changes in organic metabolites and mineral nutrients in germinating maize seeds under salt (NaCl) stress. Seed Sci Technol 28(3):641–656Google Scholar
  18. Ashraf M, Wu L (1994) Breeding for salinity tolerance in plants. Crit Rev Plant Sci 13(1):17–42CrossRefGoogle Scholar
  19. Ashraf M, Zafar R, Ashraf MY (2003) Time-course changes in the inorganic and organic components of germinating sunflower achenes under salt (NaCl) stress. Flora-Morphol Distribution Funct Ecol Plants 198(1):26–36CrossRefGoogle Scholar
  20. Austin JR, Frost E, Vidi P-A, Kessler F, Staehelin LA (2006) Plastoglobules are lipoprotein subcompartments of the chloroplast that are permanently coupled to thylakoid membranes and contain biosynthetic enzymes. Plant Cell 18(7):1693–1703PubMedPubMedCentralCrossRefGoogle Scholar
  21. Azza A, Fatma E, Favahat M (2007) Responses of ornamental plants woody trees to salinity world. J Agric Sci 3:386–395Google Scholar
  22. Babgohari MZ, Niazi A, Moghadam AA, Deihimi T, Ebrahimie E (2013) Genome-wide analysis of key salinity-tolerance transporter (HKT1; 5) in wheat and wild wheat relatives (A and D genomes). In Vitro Cell Dev Biol Plant 49(2):97–106CrossRefGoogle Scholar
  23. Baghel L (2017) Magnetopriming of soybean seeds – advantages, inheritance and stress tolerance. Ph.D Thesis, School of Life Sciences, DAVV, Indore, IndiaGoogle Scholar
  24. Baghel L, Kataria S, Guruprasad KN (2016) Static magnetic field treatment of seeds improves carbon and nitrogen metabolism under salinity stress in soybean. Bioelectromagnetics 37(7):455–470PubMedCrossRefGoogle Scholar
  25. Baki G, Siefritz F, Man HM, Weiner H, Kaldenhoff R, Kaiser W (2000) Nitrate reductase in Zea mays L. under salinity. Plant Cell Environ 23(5):515–521CrossRefGoogle Scholar
  26. Bayuelo-Jimenez JS, Craig R, Lynch JP (2002) Salinity tolerance of species during germination and early seedling growth. Crop Sci 42(5):1584–1594CrossRefGoogle Scholar
  27. Bekki A, Trinchant JC, Rigaud J (1987) Nitrogen fixation (C2H2 reduction) by Medicago nodules and bacteroids under sodium chloride stress. Physiol Plant 71(1):61–67CrossRefGoogle Scholar
  28. Beltagi M, Ismail MA, Mohamed FH (2006) Induced salt tolerance in common bean (Phaseolus vulgaris L.) by gamma irradiation. Pak J Biol Sci 9(6):1143–1148CrossRefGoogle Scholar
  29. Birben E, Sahiner UM, Sackesen C, Erzurum S, Kalayci O (2012) Oxidative stress and antioxidant defense. World Allergy Organ J 5(1):9PubMedPubMedCentralCrossRefGoogle Scholar
  30. Bliss R, Platt-Aloia K, Thomson W (1986) Osmotic sensitivity in relation to salt sensitivity in germinating barley seeds. Plant Cell Environ 9(9):721–725CrossRefGoogle Scholar
  31. Blumwald E (2000) Sodium transport and salt tolerance in plants. Curr Opin Cell Biol 12(4):431–434PubMedCrossRefGoogle Scholar
  32. Bose J, Rodrigo-Moreno A, Shabala S (2013) ROS homeostasis in halophytes in the context of salinity stress tolerance. J Exp Bot:ert430Google Scholar
  33. Bradford KJ (1995) Water relations in seed germination. Seed Dev Germination 1(13):351–396Google Scholar
  34. Bray EA (1997) Plant responses to water deficit. Trends Plant Sci 2(2):48–54CrossRefGoogle Scholar
  35. Brevedan R, Egli D (2003) Short periods of water stress during seed filling, leaf senescence, and yield of soybean. Crop Sci 43(6):2083–2088CrossRefGoogle Scholar
  36. Brini F, Hanin M, Lumbreras V, Amara I, Khoudi H, Hassairi A, Pages M, Masmoudi K (2007) Overexpression of wheat dehydrin DHN-5 enhances tolerance to salt and osmotic stress in Arabidopsis thaliana. Plant Cell Rep 26(11):2017–2026PubMedCrossRefGoogle Scholar
  37. Bruns S, Hecht-Buchholz C (1990) Light and electron microscope studies on the leaves of several potato cultivars after application of salt at various development stages. Potato Res 33(1):33–41CrossRefGoogle Scholar
  38. Bustingorri C, Lavado RS (2011) Soybean growth under stable versus peak salinity. Sci Agric 68(1):102–108CrossRefGoogle Scholar
  39. Bustingorri C, Lavado R (2013) Soybean response and ion accumulation under sprinkler irrigation with sodium-rich saline water. J Plant Nutr 36(11):1743–1753CrossRefGoogle Scholar
  40. Bybordi A (2010) The influence of salt stress on seed germination, growth and yield of canola cultivars. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 38(1):128Google Scholar
  41. Byrt CS, Xu B, Krishnan M, Lightfoot DJ, Athman A, Jacobs AK, Watson-Haigh NS, Plett D, Munns R, Tester M (2014) The Na+ transporter, TaHKT1; 5-D, limits shoot Na+ accumulation in bread wheat. Plant J 80(3):516–526PubMedCrossRefGoogle Scholar
  42. Carillo P, Mastrolonardo G, Nacca F, Fuggi A (2005) Nitrate reductase in durum wheat seedlings as affected by nitrate nutrition and salinity. Funct Plant Biol 32(3):209–219CrossRefGoogle Scholar
  43. Carillo P, Mastrolonardo G, Nacca F, Parisi D, Verlotta A, Fuggi A (2008) Nitrogen metabolism in durum wheat under salinity: accumulation of proline and glycine betaine. Funct Plant Biol 35(5):412–426CrossRefGoogle Scholar
  44. Carpýcý E, Celýk N, Bayram G (2009) Effects of salt stress on germination of some maize (Zea mays L.) cultivars. Afr J Biotechnol 8(19)Google Scholar
  45. Casadevall R, Rodriguez RE, Debernardi JM, Palatnik JF, Casati P (2013) Repression of growth regulating factors by the microRNA396 inhibits cell proliferation by UV-B radiation in Arabidopsis leaves. Plant Cell 25(9):3570–3583PubMedPubMedCentralCrossRefGoogle Scholar
  46. Cassaniti C, Leonardi C, Flowers TJ (2009) The effects of sodium chloride on ornamental shrubs. Sci Hortic 122(4):586–593CrossRefGoogle Scholar
  47. Cassaniti C, Romano D, Flowers TJ (2012) The response of ornamental plants to saline irrigation water. Intech Open Access PublisherGoogle Scholar
  48. Chang H, Siegel B, Siegel S (1984) Salinity-induced changes in isoperoxidases in taro Colocasia esculenta. Phytochemistry 23(2):233–235CrossRefGoogle Scholar
  49. Chaves M, Flexas J, Pinheiro C (2009) Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann Bot 103(4):551–560PubMedCrossRefGoogle Scholar
  50. Cheeseman JM (1988) Mechanisms of salinity tolerance in plants. Plant Physiol 87(3):547–550PubMedPubMedCentralCrossRefGoogle Scholar
  51. Chen G-X, Asada K (1989) Ascorbate peroxidase in tea leaves: occurrence of two isozymes and the differences in their enzymatic and molecular properties. Plant Cell Physiol 30(7):987–998Google Scholar
  52. Chen D, Yu R (1995) Studies on relative salt tolerance of crops II. Salt tolerance of some main crop species. Acta Pedol Sin 33(2):121–128Google Scholar
  53. Chen C, Tao C, Peng H, Ding Y (2007) Genetic analysis of salt stress responses in asparagus bean (Vigna unguiculata (L.) ssp. sesquipedalis Verdc.) J Hered 98(7):655–665PubMedCrossRefGoogle Scholar
  54. Chen L, Ren F, Zhong H, Jiang W, Li X (2009) Identification and expression analysis of genes in response to high-salinity and drought stresses in Brassica napus. Acta Biochim Biophys Sin 42(2):154–164CrossRefGoogle Scholar
  55. Chinnusamy V, Jagendorf A, Zhu J-K (2005) Understanding and improving salt tolerance in plants. Crop Sci 45(2):437–448CrossRefGoogle Scholar
  56. Cho U-H, Park J-O (2000) Mercury-induced oxidative stress in tomato seedlings. Plant Sci 156(1):1–9PubMedCrossRefGoogle Scholar
  57. Colmer T, Munns R, Flowers T (2006) Improving salt tolerance of wheat and barley: future prospects. Aust J Exp Agric 45(11):1425–1443CrossRefGoogle Scholar
  58. Comba M, Benavides M, Gallego S, Tomaro M (1997) Relationship between nitrogen fixation and oxidative stress induction in nodules of salt-treated soybean plants. PhytonGoogle Scholar
  59. Cramer GR (2002) Sodium-calcium interactions under salinity stress. In: Salinity: environment-plants-molecules. Springer, Dordrecht, pp 205–227Google Scholar
  60. Davenport R, James RA, Zakrisson-Plogander A, Tester M, Munns R (2005) Control of sodium transport in durum wheat. Plant Physiol 137(3):807–818PubMedPubMedCentralCrossRefGoogle Scholar
  61. Deane-Drummond CE, Glass AD (1982) Studies of nitrate influx into barley roots by the use of 36ClO3− as a tracer for nitrate. 1. Interactions with chloride and other ions. Can J Bot 60(10):2147–2153CrossRefGoogle Scholar
  62. Delfine S, Alvino A, Zacchini M, Loreto F (1998) Consequences of salt stress on conductance to CO2 diffusion, Rubisco characteristics and anatomy of spinach leaves. Funct Plant Biol 25(3):395–402Google Scholar
  63. Demir M, Arif I (2003) Effects of different soil salinity levels on germination and seedling growth of safflower (Carthamus tinctorius l). Turkish J Agric 27:221–227Google Scholar
  64. Ding D, Zhang L, Wang H, Liu Z, Zhang Z, Zheng Y (2009) Differential expression of miRNAs in response to salt stress in maize roots. Ann Bot 103(1):29–38PubMedCrossRefGoogle Scholar
  65. Duarte B, Santos D, Marques J, Caçador I (2013) Ecophysiological adaptations of two halophytes to salt stress: photosynthesis, PS II photochemistry and anti-oxidant feedback–implications for resilience in climate change. Plant Physiol Biochem 67:178–188PubMedCrossRefGoogle Scholar
  66. El Naim AM, Mohammed KE, Ibrahim EA, Suleiman NN (2012) Impact of salinity on seed germination and early seedling growth of three sorghum (Sorghum biolor L. Moench) cultivars. Sci Technol 2(2):16–20CrossRefGoogle Scholar
  67. Elstner EF (1987) Metabolism of activated oxygen species. The biochemistry of plants: a comprehensive treatise (USA)Google Scholar
  68. Farhoudi R, Sharifzadeh F, Poustini K, Makkizadeh M, Kochak Por M (2007) The effects of NaCl priming on salt tolerance in canola (Brassica napus) seedlings grown under saline conditions. Seed Sci Technol 35(3):754–759CrossRefGoogle Scholar
  69. Feng L, Han Y, Liu G, An B, Yang J, Yang G, Li Y, Zhu Y (2007) Overexpression of sedoheptulose-1, 7-bisphosphatase enhances photosynthesis and growth under salt stress in transgenic rice plants. Funct Plant Biol 34(9):822–834CrossRefGoogle Scholar
  70. Flagella Z, Trono D, Pompa M, Di Fonzo N, Pastore D (2006) Seawater stress applied at germination affects mitochondrial function in durum wheat (Triticum durum) early seedlings. Funct Plant Biol 33(4):357–366CrossRefGoogle Scholar
  71. Flores P, Botella M, Martinez V, Cerdá A (2000) Ionic and osmotic effects on nitrate reductase activity in tomato seedlings. J Plant Physiol 156(4):552–557CrossRefGoogle Scholar
  72. Flowers T (2004) Improving crop salt tolerance. J Exp Bot 55(396):307–319PubMedCrossRefGoogle Scholar
  73. Flowers T, Duque E, Hajibagheri M, McGonigle T, Yeo A (1985) The effect of salinity on leaf ultrastructure and net photosynthesis of two varieties of rice: further evidence for a cellular component of salt-resistance. New Phytol 100(1):37–43CrossRefGoogle Scholar
  74. Flowers T, Koyama M, Flowers S, Sudhakar C, Singh K, Yeo A (2000) QTL: their place in engineering tolerance of rice to salinity. J Exp Bot 51(342):99–106PubMedCrossRefGoogle Scholar
  75. Foolad M (1999) Comparison of salt tolerance during seed germination and vegetative growth in tomato by QTL mapping. Genome 42(4):727–734CrossRefGoogle Scholar
  76. Foyer CH (1993) Ascorbic acid. Antioxidants Higher Plants:31–58Google Scholar
  77. Foyer CH, Lelandais M, Edwards EA, Mullineaux PM (1991) The role of ascorbate in plants, interactions with photosynthesis, and regulatory significance. Current Topics Plant Physiol (USA)Google Scholar
  78. Franco JA, Fernández JA, Bañón S, González A (1997) Relationship between the effects of salinity on seedling leaf area and fruit yield of six muskmelon cultivars. Hortscience 32(4):642–644Google Scholar
  79. Franco J, Bañón S, Vicente M, Miralles J, Martínez-Sánchez J (2011) Review article: root development in horticultural plants grown under abiotic stress conditions–a review. J Hortic Sci Biotechnol 86(6):543–556CrossRefGoogle Scholar
  80. Fridovich I (1986a) Biological effects of the superoxide radical. Arch Biochem Biophys 247(1):1–11PubMedCrossRefGoogle Scholar
  81. Fridovich I (1986b) Superoxide dismutases. Adv Enzymol Relat Areas Mol Biol 58(6):61–97PubMedGoogle Scholar
  82. Fukuda A, Nakamura A, Tagiri A, Tanaka H, Miyao A, Hirochika H, Tanaka Y (2004) Function, intracellular localization and the importance in salt tolerance of a vacuolar Na+/H+ antiporter from rice. Plant Cell Physiol 45(2):146–159PubMedCrossRefGoogle Scholar
  83. Gama P, Inanaga S, Tanaka K, Nakazawa R (2007) Physiological response of common bean (Phaseolus vulgaris L.) seedlings to salinity stress. Afr J Biotechnol 6(2)Google Scholar
  84. Ganieva RA, Allahverdiyev SR, Guseinova NB, Kavakli HI, Nafisi S (1998) Effect of salt stress and synthetic hormone polystimuline K on the photosynthetic activity of cotton (Gossypium hirsutum). Turk J Bot 22(4):217–222Google Scholar
  85. Gao P, Bai X, Yang L, Lv D, Pan X, Li Y, Cai H, Ji W, Chen Q, Zhu Y (2011) osa-MIR393: a salinity-and alkaline stress-related microRNA gene. Mol Biol Rep 38(1):237–242PubMedCrossRefGoogle Scholar
  86. Garg B, Gupta I (1997) Saline wastelands environment and plant growth. Scientific Publishers, JodhpurGoogle Scholar
  87. Garratt LC, Janagoudar BS, Lowe KC, Anthony P, Power JB, Davey MR (2002) Salinity tolerance and antioxidant status in cotton cultures. Free Radic Biol Med 33(4):502–511PubMedCrossRefGoogle Scholar
  88. Genc Y, Oldach K, Verbyla AP, Lott G, Hassan M, Tester M, Wallwork H, McDonald GK (2010) Sodium exclusion QTL associated with improved seedling growth in bread wheat under salinity stress. Theor Appl Genet 121(5):877–894PubMedCrossRefGoogle Scholar
  89. Ghassemi-Golezani K, Taifeh-Noori M, Oustan S, Moghaddam M (2009) Response of soybean cultivars to salinity stress. J Food Agric Environ 7(2):401–404Google Scholar
  90. Glenn EP, Brown JJ, Blumwald E (1999) Salt tolerance and crop potential of halophytes. Crit Rev Plant Sci 18(2):227–255CrossRefGoogle Scholar
  91. Gomes-Filho E, Lima CRFM, Costa JH, da Silva ACM, Lima MGS, de Lacerda CF, Prisco JT (2008) Cowpea ribonuclease: properties and effect of NaCl-salinity on its activation during seed germination and seedling establishment. Plant Cell Rep 27(1):147–157PubMedCrossRefGoogle Scholar
  92. Gorham J, Hardy C, Wyn Jones R, Joppa L, Law C (1987) Chromosomal location of a K/Na discrimination character in the D genome of wheat. TAG Theor Appl Genet 74(5):584–588PubMedCrossRefGoogle Scholar
  93. Goswami S, Kumar RR, Rai RD (2014) Heat-responsive microRNAs regulate the transcription factors and heat shock proteins in modulating thermo-stability of starch biosynthesis enzymes in wheat ('Triticum aestivum L.) under the heat stress. Aust J Crop Sci 8(5):697Google Scholar
  94. Greenway H, Munns R (1980) Mechanisms of salt tolerance in nonhalophytes. Annu Rev Plant Physiol 31(1):149–190CrossRefGoogle Scholar
  95. Gueta-Dahan Y, Yaniv Z, Zilinskas BA, Ben-Hayyim G (1997) Salt and oxidative stress: similar and specific responses and their relation to salt tolerance in citrus. Planta 203(4):460–469PubMedCrossRefGoogle Scholar
  96. Günes A, Inal A, Alpaslan M (1996) Effect of salinity on stomatal resistance, proline, and mineral composition of pepper. J Plant Nutr 19(2):389–396CrossRefGoogle Scholar
  97. Guan R, Qu Y, Guo Y, Yu L, Liu Y, Jiang J, Chen J, Ren Y, Liu G, Tian L, Jin L, Liu Z, Hong H, Chang R, Gilliham M, Qiu L (2014) Salinity tolerance in soybean is modulated by natural variation in GmSALT3. Plant J 80:937–950Google Scholar
  98. Gunes A, Inal A, Alpaslan M, Eraslan F, Bagci EG, Cicek N (2007) Salicylic acid induced changes on some physiological parameters symptomatic for oxidative stress and mineral nutrition in maize (Zea mays L.) grown under salinity. J Plant Physiol 164(6):728–736PubMedCrossRefGoogle Scholar
  99. Gupta O, Sharma P, Gupta R, Sharma I (2014) MicroRNA mediated regulation of metal toxicity in plants: present status and future perspectives. Plant Mol Biol 84(1–2):1–18PubMedCrossRefGoogle Scholar
  100. Ha E, Ikhajiagba B, Bamidele J, Ogic-Odia E (2008) Salinity effects on young healthy seedling of Kyllingia peruviana collected from escravos, Delta state. Glob J Environ Res 2(2):74–88Google Scholar
  101. Halliwell B (1982) The toxic effects of oxygen on plant tissues. Superoxide dismutase 1:89–123Google Scholar
  102. Halliwell B (1987) Oxidative damage, lipid peroxidation and antioxidant protection in chloroplasts. Chem Phys Lipids 44(2–4):327–340CrossRefGoogle Scholar
  103. Halliwell B, Gutteridge JM (1985) Free radicals in biology and medicine. PergamonGoogle Scholar
  104. Halliwell B, Gutteridge JM (2015) Free radicals in biology and medicine. The Clarendon Press/Oxford University Press, New YorkCrossRefGoogle Scholar
  105. Hauser F, Horie T (2010) A conserved primary salt tolerance mechanism mediated by HKT transporters: a mechanism for sodium exclusion and maintenance of high K+/Na+ ratio in leaves during salinity stress. Plant Cell Environ 33(4):552–565PubMedCrossRefGoogle Scholar
  106. Hernández JA, Almansa MS (2002) Short-term effects of salt stress on antioxidant systems and leaf water relations of pea leaves. Physiol Plant 115(2):251–257PubMedCrossRefGoogle Scholar
  107. Hernandez JA, Corpas FJ, Gomez M, Río LA, Sevilla F (1993) Salt-induced oxidative stress mediated by activated oxygen species in pea leaf mitochondria. Physiol Plant 89(1):103–110CrossRefGoogle Scholar
  108. Hernandez JA, Olmos E, Corpas FJ, Sevilla F, Del Rio LA (1995) Salt-induced oxidative stress in chloroplasts of pea plants. Plant Sci 105:151–167Google Scholar
  109. Hernández JA, Ferrer MA, Jiménez A, Barceló AR, Sevilla F (2001) Antioxidant systems and O2.−/H2O2 production in the apoplast of pea leaves. Its relation with salt-induced necrotic lesions in minor veins. Plant Physiol 127(3):817–831PubMedPubMedCentralCrossRefGoogle Scholar
  110. Horie T, Motoda J, Kubo M, Yang H, Yoda K, Horie R, Chan WY, Leung HY, Hattori K, Konomi M (2005) Enhanced salt tolerance mediated by AtHKT1 transporter-induced Na+ unloading from xylem vessels to xylem parenchyma cells. Plant J 44(6):928–938PubMedCrossRefGoogle Scholar
  111. Houimli SIM, Denden M, El Hadj SB (2008) Induction of salt tolerance in pepper (Capsicum annuum) by 24-epibrassinolide. Eur Asian J BioSciences 2:83–90Google Scholar
  112. Howat D (2000) Acceptable salinity, sodicity and pH values for boreal forest reclamation. Environmental Sciences DivisionGoogle Scholar
  113. Hsiao TC, Xu LK (2000) Sensitivity of growth of roots versus leaves to water stress: biophysical analysis and relation to water transport. J Exp Bot 51:1595–1616PubMedCrossRefGoogle Scholar
  114. Huang J, Redmann R (1995) Salt tolerance of Hordeum and Brassica species during germination and early seedling growth. Can J Plant Sci 75(4):815–819CrossRefGoogle Scholar
  115. Ikbal FE, Hernández JA, Barba-Espín G, Koussa T, Aziz A, Faize M, Diaz-Vivancos P (2014) Enhanced salt-induced antioxidative responses involve a contribution of polyamine biosynthesis in grapevine plants. J Plant Physiol 171(10):779–788PubMedCrossRefGoogle Scholar
  116. Imlay JA, Linn S (1988) DNA damage and oxygen radical toxicity. Science 240(4857):1302PubMedCrossRefGoogle Scholar
  117. Ingram J, Bartels D (1996) The molecular basis of dehydration tolerance in plants. Annu Rev Plant Biol 47(1):377–403CrossRefGoogle Scholar
  118. Inzé D, Van Montagu M (1995) Oxidative stress in plants. Curr Opin Biotechnol 6(2):153–158CrossRefGoogle Scholar
  119. Isla R, Aragüés R, Royo A (1998) Validity of various physiological traits as screening criteria for salt tolerance in barley. Field Crop Res 58(2):97–107CrossRefGoogle Scholar
  120. Jafarzadeh AA, Aliasgharzad N (2007) Salinity and salt composition effects on seed germination and root length of four sugar beet cultivars. Biologia 62(5):562–564CrossRefGoogle Scholar
  121. James RA, Rivelli AR, Munns R, von Caemmerer S (2002) Factors affecting CO2 assimilation, leaf injury and growth in salt-stressed durum wheat. Funct Plant Biol 29(12):1393–1403CrossRefGoogle Scholar
  122. James RA, Davenport RJ, Munns R (2006) Physiological characterization of two genes for Na+ exclusion in durum wheat, Nax1 and Nax2. Plant Physiol 142(4):1537–1547PubMedPubMedCentralCrossRefGoogle Scholar
  123. James RA, Blake C, Byrt CS, Munns R (2011) Major genes for Na+ exclusion, Nax1 and Nax2 (wheat HKT1; 4 and HKT1; 5), decrease Na+ accumulation in bread wheat leaves under saline and waterlogged conditions. J Exp Bot 62(8):2939–2947PubMedCrossRefGoogle Scholar
  124. Jamil M, Lee CC, Rehman SU, Lee DB, Ashraf M, Rha ES (2005) Salinity (NaCl) tolerance of Brassica species at germination and early seedling growth. Elec J Env Agricult Food Chem Title 4(4):970–976Google Scholar
  125. Jamil M, Rehman S, Rha E (2007) Salinity effect on plant growth, PSII photochemistry and chlorophyll content in sugar beet (Beta Vulgaris L.) and cabbage (Brassica Oleracea Capitata L.) Pak J Bot 39(3):753–760Google Scholar
  126. Kalaji M, Guo P (2008) Chlorophyll fluorescence: a useful tool in barley plant breeding programs. Photochemistry Res Prog:439–463Google Scholar
  127. Kalaji H, Nalborczyk E (1991) Gas exchange of barley seedlings growing under salinity stress. Photosynthetica 25(2):197–202Google Scholar
  128. Kalaji HM, Pietkiewicz S (1993) Salinity effects on plant growth and other physiological processes. Acta Physiol Plant 15(2):89–124Google Scholar
  129. Kangasjärvi S, Neukermans J, Li S, Aro E-M, Noctor G (2012) Photosynthesis, photorespiration, and light signalling in defence responses. J Exp Bot:err402Google Scholar
  130. Karahara I, Ikeda A, Kondo T, Uetake Y (2004) Development of the Casparian strip in primary roots of maize under salt stress. Planta 219(1):41–47PubMedCrossRefGoogle Scholar
  131. Kataria S, Baghel L, Guruprasad K (2017) Alleviation of adverse effects of ambient UV stress on growth and some potential physiological attributes in soybean (Glycine max) by seed pre-treatment with static magnetic field. J Plant Growth Regul:1–16Google Scholar
  132. Kaveh H, Nemati H, Farsi M, Jartoodeh SV (2011) How salinity affect germination and emergence of tomato lines. J Biol Environ Sci 5(15)Google Scholar
  133. Kawasaki S, Borchert C, Deyholos M, Wang H, Brazille S, Kawai K, Galbraith D, Bohnert HJ (2001) Gene expression profiles during the initial phase of salt stress in rice. Plant Cell 13(4):889–905PubMedPubMedCentralCrossRefGoogle Scholar
  134. Khajeh-Hosseini M, Powell A, Bingham I (2003) The interaction between salinity stress and seed vigour during germination of soyabean seeds. Seed Sci Technol 31(3):715–725CrossRefGoogle Scholar
  135. Khan MA, Rizvi Y (1994) Effect of salinity, temperature, and growth regulators on the germination and early seedling growth of Atriplex griffithii var. stocksii. Can J Bot 72(4):475–479CrossRefGoogle Scholar
  136. Khan MA, Weber DJ (2006) Ecophysiology of high salinity tolerant plants, vol 40. Springer Science & Business Media, New YorkCrossRefGoogle Scholar
  137. Khan MA, Ungar IA, Showalter AM, Dewald HD (1998) NaCl-induced accumulation of glycinebetaine in four subtropical halophytes from Pakistan. Physiol Plant 102(4):487–492CrossRefGoogle Scholar
  138. Khan MA, Ahmed MZ, Hameed A (2006) Effect of sea salt and L-ascorbic acid on the seed germination of halophytes. J Arid Environ 67(3):535–540CrossRefGoogle Scholar
  139. Khodarahmpour Z, Ifar M, Motamedi M (2012) Effects of NaCl salinity on maize (Zea mays L.) at germination and early seedling stage. Afr J Biotechnol 11(2):298–304Google Scholar
  140. Kim JY, Kwak KJ, Jung HJ, Lee HJ, Kang H (2010) MicroRNA402 affects seed germination of Arabidopsis thaliana under stress conditions via targeting DEMETER-LIKE Protein3 mRNA. Plant Cell Physiol 51(6):1079–1083PubMedCrossRefGoogle Scholar
  141. Krishnamurthy A, Rathinasabapathi B (2013) Oxidative stress tolerance in plants: novel interplay between auxin and reactive oxygen species signaling. Plant Signaling & Behavior 8(10):e25761CrossRefGoogle Scholar
  142. Larcher W (2003) Physiological plant ecology: ecophysiology and stress physiology of functional groups. Springer Science & Business Media/Springer/Springer‐Verlag, Berlin/Heidelberg/New YorkGoogle Scholar
  143. Läuchli A, James RA, Huang CX, McCully M, Munns R (2008) Cell-specific localization of Na+ in roots of durum wheat and possible control points for salt exclusion. Plant Cell Environ 31(11):1565–1574PubMedCrossRefGoogle Scholar
  144. Lee DH, Kim YS, Lee CB (2001) The inductive responses of the antioxidant enzymes by salt stress in the rice (Oryza sativa L.) J Plant Physiol 158(6):737–745CrossRefGoogle Scholar
  145. Lee MH, Cho EJ, Wi SG, Bae H, Kim JE, Cho J-Y, Lee S, Kim J-H, Chung BY (2013) Divergences in morphological changes and antioxidant responses in salt-tolerant and salt-sensitive rice seedlings after salt stress. Plant Physiol Biochem 70:325–335PubMedCrossRefGoogle Scholar
  146. Liang G, Yang F, Yu D (2010) MicroRNA395 mediates regulation of sulfate accumulation and allocation in Arabidopsis thaliana. Plant J 62(6):1046–1057PubMedGoogle Scholar
  147. Lin CC, Kao CH (1995) NaCl stress in rice seedlings: starch mobilization and the influence of gibberellic acid on seedling growth. Botanical Bull Academia Sinica 36Google Scholar
  148. Liu H-H, Tian X, Li Y-J, Wu C-A, Zheng C-C (2008) Microarray-based analysis of stress-regulated microRNAs in Arabidopsis thaliana. RNA 14(5):836–843PubMedPubMedCentralCrossRefGoogle Scholar
  149. Liu R, Sun W, Chao M, C-J JI, Wang M, YE B-P (2009) Leaf anatomical changes of Bruguiera gymnorrhiza seedlings under salt stress. J Trop Subtropical Bot 2:012Google Scholar
  150. Liu Y, Yu L, Qu Y, Chen J, Liu X, Hong H, Liu Z, Chang R, Gilliham M, Qiu L, Guan R (2016) GmSALT3, which confers improved soybean salt tolerance in the field, increases leaf Cl exclusion prior to Na+ exclusion but does not improve early vigor under salinity. Front Plant Sci 7:1485-1–1485-14Google Scholar
  151. Long R, Li M, Zhang T, Kang J, Sun Y, Cong L, Gao Y, Liu F, Yang Q (2016) Comparative proteomic analysis reveals differential root proteins in Medicago sativa and Medicago truncatula in response to salt stress. Front Plant Sci 7Google Scholar
  152. Longstreth DJ, Nobel PS (1979) Salinity effects on leaf anatomy consequences for photosynthesis. Plant Physiol 63(4):700–703PubMedPubMedCentralCrossRefGoogle Scholar
  153. Maggio A, Hasegawa PM, Bressan RA, Consiglio MF, Joly RJ (2001) Review: unravelling the functional relationship between root anatomy and stress tolerance. Funct Plant Biol 28(10):999–1004CrossRefGoogle Scholar
  154. Maggio A, Raimondi G, Martino A, De Pascale S (2007) Salt stress response in tomato beyond the salinity tolerance threshold. Environ Exp Bot 59(3):276–282CrossRefGoogle Scholar
  155. Mahajan S, Tuteja N (2005) Cold, salinity and drought stresses: an overview. Arch Biochem Biophys 444(2):139–158PubMedCrossRefGoogle Scholar
  156. Mansour M, Salama K, Al-Mutawa M, Abou Hadid A (2002) Effect of NaCl and polyamines on plasma membrane lipids of wheat roots. Biol Plant 45(2):235–239CrossRefGoogle Scholar
  157. Marschner H, Rimmington G (1988) Mineral nutrition of higher plants. Plant Cell Environ 11:147–148Google Scholar
  158. Martínez-Atienza J, Jiang X, Garciadeblas B, Mendoza I, Zhu J-K, Pardo JM, Quintero FJ (2007) Conservation of the salt overly sensitive pathway in rice. Plant Physiol 143(2):1001–1012PubMedPubMedCentralCrossRefGoogle Scholar
  159. Mass EV (1990) Crop salt tolerance. Chapter 13, P. 262–304. In: Tanji KK (ed) Agricultural salinity assessment and management. ASCE Manuals and Reports on Engineering No. 71, American Society of Civil Engineers, New YorkGoogle Scholar
  160. Mathur N, Singh J, Bohra S, Bohra A, Vyas A (2006) Biomass production, productivity and physiological changes in moth bean genotypes at different salinity levels. Am J Plant Physiol 1(2):210–213CrossRefGoogle Scholar
  161. Maxwell K, Johnson GN (2000) Chlorophyll fluorescence—a practical guide. J Exp Bot 51(345):659–668PubMedCrossRefGoogle Scholar
  162. Meloni D, Gulotta M, Martinez C (2008) Salinity tolerance in Schinopsis quebracho colorado: seed germination, growth, ion relations and metabolic responses. J Arid Environ 72(10):1785–1792CrossRefGoogle Scholar
  163. Memon SA, Hou X, Wang LJ (2010) Morphlogical analysis of salt stress response of pak choi. Elec J Env Agric Food Chem 9(1)Google Scholar
  164. Meneguzzo S, Sgherri CL, Navari-Izzo F, Izzo R (1998) Stromal and thylakoid-bound ascorbate peroxidases in NaCl-treated wheat. Physiol Plant 104(4):735–740CrossRefGoogle Scholar
  165. Meyer G, Schmitt JM, Bohnert HJ (1990) Direct screening of a small genome: estimation of the magnitude of plant gene expression changes during adaptation to high salt. Mol Gen Genet MGG 224(3):347–356PubMedCrossRefGoogle Scholar
  166. Mian A, Oomen RJ, Isayenkov S, Sentenac H, Maathuis FJ, Véry AA (2011) Over-expression of an Na+−and K+−permeable HKT transporter in barley improves salt tolerance. Plant J 68(3):468–479PubMedCrossRefGoogle Scholar
  167. Miransari M, Smith D (2007) Overcoming the stressful effects of salinity and acidity on soybean nodulation and yields using signal molecule genistein under field conditions. J Plant Nutr 30(12):1967–1992CrossRefGoogle Scholar
  168. Miransari M, Smith D (2009) Alleviating salt stress on soybean (Glycine max (L.) Merr.)–Bradyrhizobium japonicum symbiosis, using signal molecule genistein. Eur J Soil Biol 45(2):146–152CrossRefGoogle Scholar
  169. Mitsuya S, Takeoka Y, Miyake H (2000) Effects of sodium chloride on foliar ultrastructure of sweet potato (Ipomoea batatas Lam.) plantlets grown under light and dark conditions in vitro. J Plant Physiol 157(6):661–667CrossRefGoogle Scholar
  170. Mittova V, Tal M, Volokita M, Guy M (2003) Up-regulation of the leaf mitochondrial and peroxisomal antioxidative systems in response to salt-induced oxidative stress in the wild salt-tolerant tomato species Lycopersicon pennellii. Plant Cell Environ 26(6):845–856PubMedCrossRefGoogle Scholar
  171. Moradi F, Ismail AM (2007) Responses of photosynthesis, chlorophyll fluorescence and ROS-scavenging systems to salt stress during seedling and reproductive stages in rice. Ann Bot 99(6):1161–1173PubMedPubMedCentralCrossRefGoogle Scholar
  172. Munns R (1992) A leaf elongation assay detects an unknown growth inhibitor in xylem sap from wheat and barley. Funct Plant Biol 19(2):127–135Google Scholar
  173. Munns R (1993) Physiological processes limiting plant growth in saline soils: some dogmas and hypotheses. Plant Cell Environ 16(1):15–24CrossRefGoogle Scholar
  174. Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25(2):239–250PubMedCrossRefGoogle Scholar
  175. Munns R, Gilliham M (2015) Salinity tolerance of crops–what is the cost? New Phytol 208(3):668–673PubMedCrossRefGoogle Scholar
  176. Munns R, Rawson H (1999) Effect of salinity on salt accumulation and reproductive development in the apical meristem of wheat and barley. Funct Plant Biol 26(5):459–464Google Scholar
  177. Munns R, Termaat A (1986) Whole-plant responses to salinity. Funct Plant Biol 13(1):143–160Google Scholar
  178. Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681PubMedCrossRefGoogle Scholar
  179. Munns R, Rebetzke GJ, Husain S, James RA, Hare RA (2003) Genetic control of sodium exclusion in durum wheat. Crop Pasture Sci 54(7):627–635CrossRefGoogle Scholar
  180. Munns R, James RA, Läuchli A (2006) Approaches to increasing the salt tolerance of wheat and other cereals. J Exp Bot 57(5):1025–1043PubMedCrossRefGoogle Scholar
  181. Murat C, Zampieri E, Vizzini A, Bonfante P (2008) Is the Perigord black truffle threatened by an invasive species? We dreaded it and it has happened! New Phytol 178(4):699–702PubMedCrossRefGoogle Scholar
  182. Mustard J, Renault S (2006) Response of red-osier dogwood (Cornus sericea) seedlings to NaCl during the onset of bud break. Botany 84(5):844–851Google Scholar
  183. Netondo GW, Onyango JC, Beck E (2004) Sorghum and salinity. Crop Sci 44(3):797–805CrossRefGoogle Scholar
  184. Niazi B, Athar M, Salim M, Rozema J (2005) Growth and ionic relations of fodderbeet and seabeet under saline environments. Int J Environ Sci Technol 2(2):113–120CrossRefGoogle Scholar
  185. Niazi A, Ramezani A, Dinari A (2014) GSTF1 gene expression analysis in cultivated wheat plants under salinity and ABA treatments. Mol Biol Res Commun 3(1):9PubMedPubMedCentralGoogle Scholar
  186. Niu X, Zhu J-K, Narasimhan ML, Bressan RA, Hasegawa PM (1993) Plasma-membrane H+-ATPase gene expression is regulated by NaCl in cells of the halophyte Atriplex nummularia L. Planta 190(4):433–438PubMedCrossRefGoogle Scholar
  187. Ochiai K, Matoh T (2002) Characterization of the Na+ delivery from roots to shoots in rice under saline stress: excessive salt enhances apoplastic transport in rice plants. Soil Sci Plant Nutr 48(3):371–378CrossRefGoogle Scholar
  188. Oh D-H, Lee SY, Bressan RA, Yun D-J, Bohnert HJ (2010) Intracellular consequences of SOS1 deficiency during salt stress. J Exp Bot 61(4):1205–1213PubMedPubMedCentralCrossRefGoogle Scholar
  189. Othman Y, Al-Karaki G, Al-Tawaha A, Al-Horani A (2006) Variation in germination and ion uptake in barley genotypes under salinity conditions. World J Agric Sci 2(1):11–15Google Scholar
  190. Parida AK, Das AB (2004) Effects of NaCl stress on nitrogen and phosphorous metabolism in a true mangrove Bruguiera parviflora grown under hydroponic culture. J Plant Physiol 161(8):921–928PubMedCrossRefGoogle Scholar
  191. Parida AK, Das AB (2005) Salt tolerance and salinity effects on plants: a review. Ecotoxicol Environ Saf 60(3):324–349PubMedCrossRefGoogle Scholar
  192. Parida A, Das AB, Das P (2002) NaCl stress causes changes in photosynthetic pigments, proteins, and other metabolic components in the leaves of a true mangrove, Bruguiera parviflora, in hydroponic cultures. J Plant Biol 45(1):28–36CrossRefGoogle Scholar
  193. Parida AK, Das A, Mittra B (2004) Effects of salt on growth, ion accumulation, photosynthesis and leaf anatomy of the mangrove, Bruguiera parviflora. Trees 18(2):167–174CrossRefGoogle Scholar
  194. Parker MB, Gascho G, Gaines T (1983) Chloride toxicity of soybeans grown on Atlantic coast flatwoods soils. Agron J 75(3):439–443CrossRefGoogle Scholar
  195. Pasapula V, Shen G, Kuppu S, Paez-Valencia J, Mendoza M, Hou P, Chen J, Qiu X, Zhu L, Zhang X (2011) Expression of an Arabidopsis vacuolar H+−pyrophosphatase gene (AVP1) in cotton improves drought-and salt tolerance and increases fibre yield in the field conditions. Plant Biotechnol J 9(1):88–99PubMedCrossRefGoogle Scholar
  196. Passioura J (1988) Water transport in and to roots. Annu Rev Plant Physiol Plant Mol Biol 39(1):245–265CrossRefGoogle Scholar
  197. Pi E, Qu L, Hu J, Huang Y, Qiu L, Lu H, Jiang B, Liu C, Peng T, Zhao Y (2016) Mechanisms of soybean roots' tolerances to salinity revealed by proteomic and phosphoproteomic comparisons between two cultivars. Mol Cell Proteomics 15(1):266–288PubMedCrossRefGoogle Scholar
  198. Poljakoff-Mayber A, Somers G, Werker E, Gallagher J (1994) Seeds of Kosteletzkya virginica (Malvaceae): their structure, germination, and salt tolerance. II. Germination and salt tolerance. Am J Bot:54–59Google Scholar
  199. Popova LP, Stoinova ZG, Maslenkova LT (1995) Involvement of abscisic acid in photosynthetic process in Hordeum vulgare L. during salinity stress. J Plant Growth Regul 14(4):211CrossRefGoogle Scholar
  200. Popova OV, Ismailov SF, Popova TN, Dietz K-J, Golldack D (2002) Salt-induced expression of NADP-dependent isocitrate dehydrogenase and ferredoxin-dependent glutamate synthase in Mesembryanthemum crystallinum. Planta 215(6):906–913PubMedCrossRefGoogle Scholar
  201. Prasad S, Bagali P, Hittalmani S, Shashidhar H (2000) Molecular mapping of quantitative trait loci associated with seedling tolerance to salt stress in rice (Oryza sativa L.) Curr Sci 78(2):162–164Google Scholar
  202. Qiu Q-S, Guo Y, Dietrich MA, Schumaker KS, Zhu J-K (2002) Regulation of SOS1, a plasma membrane Na+/H+ exchanger in Arabidopsis thaliana, by SOS2 and SOS3. Proc Natl Acad Sci 99(12):8436–8441PubMedPubMedCentralCrossRefGoogle Scholar
  203. Quintero FJ, Martinez-Atienza J, Villalta I, Jiang X, Kim W-Y, Ali Z, Fujii H, Mendoza I, Yun D-J, Zhu J-K (2011) Activation of the plasma membrane Na/H antiporter Salt-Overly-Sensitive 1 (SOS1) by phosphorylation of an auto-inhibitory C-terminal domain. Proc Natl Acad Sci 108(6):2611–2616PubMedPubMedCentralCrossRefGoogle Scholar
  204. Rahnama A, James RA, Poustini K, Munns R (2010) Stomatal conductance as a screen for osmotic stress tolerance in durum wheat growing in saline soil. Funct Plant Biol 37(3):255–263CrossRefGoogle Scholar
  205. Rameeh V, Cherati A, Abbaszadeh F (2012) Salinity effects on yield, yield components and nutrient ions in rapeseed genotypes. J Agric Sci Belgrade 57(1):19–29CrossRefGoogle Scholar
  206. Ranathunge K, Shao S, Qutob D, Gijzen M, Peterson CA, Bernards MA (2010) Properties of the soybean seed coat cuticle change during development. Planta 231(5):1171–1188PubMedCrossRefGoogle Scholar
  207. Rao D, Giller K, Yeo A, Flowers T (2002) The effects of salinity and sodicity upon nodulation and nitrogen fixation in chickpea (Cicer arietinum). Ann Bot 89(5):563–570PubMedPubMedCentralCrossRefGoogle Scholar
  208. Raul L-A, Andres O-C, Armando L-A, Bernardo M-A, Enrique T-D (2003) Response to salinity of three grain legumes for potential cultivation in arid areas. Soil Sci Plant Nutr 49(3):329–336CrossRefGoogle Scholar
  209. Redondo-Gómez S, Mateos-Naranjo E, Davy AJ, Fernández-Muñoz F, Castellanos EM, Luque T, Figueroa ME (2007) Growth and photosynthetic responses to salinity of the salt-marsh shrub Atriplex portulacoides. Ann Bot 100(3):555–563PubMedPubMedCentralCrossRefGoogle Scholar
  210. Ren Z-H, Gao J-P, Li L-G, Cai X-L, Huang W, Chao D-Y, Zhu M-Z, Wang Z-Y, Luan S, Lin H-X (2005) A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nat Genet 37(10):1141–1146PubMedCrossRefGoogle Scholar
  211. Rengasamy P, Olsson K (1993) Irrigation and sodicity. Soil Res 31(6):821–837CrossRefGoogle Scholar
  212. Rodrıguez P, Torrecillas A, Morales M, Ortuno M, Sánchez-Blanco M (2005) Effects of NaCl salinity and water stress on growth and leaf water relations of Asteriscus maritimus plants. Environ Exp Bot 53(2):113–123CrossRefGoogle Scholar
  213. Romero-Aranda R, Soria T, Cuartero J (2001) Tomato plant-water uptake and plant-water relationships under saline growth conditions. Plant Sci 160(2):265–272PubMedCrossRefGoogle Scholar
  214. Roppolo D, De Rybel B, Tendon VD, Pfister A, Alassimone J, Vermeer JE, Yamazaki M, Stierhof Y-D, Beeckman T, Geldner N (2011) A novel protein family mediates Casparian strip formation in the endodermis. Nature 473(7347):380–383PubMedCrossRefGoogle Scholar
  215. Roxas VP, Lodhi SA, Garrett DK, Mahan JR, Allen RD (2000) Stress tolerance in transgenic tobacco seedlings that overexpress glutathione S-transferase/glutathione peroxidase. Plant Cell Physiol 41(11):1229–1234PubMedCrossRefGoogle Scholar
  216. Ruiz-Sánchez MC, Domingo R, Torrecillas A, Pérez-Pastor A (2000) Water stress preconditioning to improve drought resistance in young apricot plants. Plant Sci 156(2):245–251PubMedCrossRefGoogle Scholar
  217. Saffan E (2008) Effect of salinity and osmotic stresses on some economic plants. Res J Agric Biol Sci 4(2):159–166Google Scholar
  218. Santos CV, Falcão IP, Pinto GC, Oliveira H, Loureiro J (2002) Nutrient responses and glutamate and proline metabolism in sunflower plants and calli under Na2SO4 stress. J Plant Nutr Soil Sci 165(3):366–372CrossRefGoogle Scholar
  219. Saqib M, Zörb C, Schubert S (2006) Salt-resistant and salt-sensitive wheat genotypes show similar biochemical reaction at protein level in the first phase of salt stress. Zeits Pflanzenernahr Bodenkunde-Journ Plant Nutrit. Soil Sci 169(4):542–548Google Scholar
  220. Schuch UK, Kelly JJ (2008) Salinity tolerance of cacti and succulents. Turfgrass, Landscape and Urban IPM Research SummaryGoogle Scholar
  221. Seemann JR, Critchley C (1985) Effects of salt stress on the growth, ion content, stomatal behaviour and photosynthetic capacity of a salt-sensitive species, Phaseolus vulgaris L. Planta 164(2):151–162PubMedCrossRefGoogle Scholar
  222. Serraj R, Vasquez-Diaz H, Drevon J (1998) Effects of salt stress on nitrogen fixation, oxygen diffusion, and ion distribution in soybean, common bean, and alfalfa. J Plant Nutr 21(3):475–488CrossRefGoogle Scholar
  223. Serraj R, Vasquez-Diaz H, Hernandez G, Drevon J-J (2001) Genotypic difference in the short-term response of nitrogenase activity (C2H2 reduction) to salinity and oxygen in the common bean. Agronomie 21(6–7):645–651CrossRefGoogle Scholar
  224. Shalata A, Neumann PM (2001) Exogenous ascorbic acid (vitamin C) increases resistance to salt stress and reduces lipid peroxidation. J Exp Bot 52(364):2207–2211PubMedCrossRefGoogle Scholar
  225. Shannon MC, Grieve CM, Francois LE (1994) Whole-plant response to salinity. Plant-Environ Interact:199–244Google Scholar
  226. Shao H-B, Guo Q-J, Chu L-Y, Zhao X-N, Su Z-L, Hu Y-C, Cheng J-F (2007) Understanding molecular mechanism of higher plant plasticity under abiotic stress. Colloids Surf B: Biointerfaces 54(1):37–45PubMedCrossRefGoogle Scholar
  227. Sharma T, Sen D (1989) A new report on abnormally fast germinating seeds of Haloxylon spp. An ecological adaptation to saline habitat. Curr Sci Bangalore 58(7):382–385Google Scholar
  228. Sharma P, Prashat GR, Kumar A, Mann A (2016) Physiological and molecular insights into mechanisms for salt tolerance in plants. In: Innovative saline agriculture. Springer, pp 321–349Google Scholar
  229. Shen C-X, Zhang Q-F, Li J, Bi F-C, Yao N (2010) Induction of programmed cell death in Arabidopsis and rice by single-wall carbon nanotubes. Am J Bot 97(10):1602–1609PubMedCrossRefGoogle Scholar
  230. Shereen A, Ansari R, Soomro A (2001) Salt tolerance in soybean (Glycine max L.): effect on growth and ion relations. Pak J Bot 33(4):393–402Google Scholar
  231. Shi H, Ishitani M, Kim C, Zhu J-K (2000) The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. Proc Natl Acad Sci 97(12):6896–6901PubMedPubMedCentralCrossRefGoogle Scholar
  232. Shi H, Quintero FJ, Pardo JM, Zhu J-K (2002) The putative plasma membrane Na+/H+ antiporter SOS1 controls long-distance Na+ transport in plants. Plant Cell 14(2):465–477PubMedPubMedCentralCrossRefGoogle Scholar
  233. Shinwari ZK, Nakashima K, Miura S, Kasuga M, Seki M, Yamaguchi-Shinozaki K, Shinozaki K (1998) An Arabidopsis gene family encoding DRE/CRT binding proteins involved in low-temperature-responsive gene expression. Biochem Biophys Res Commun 250(1):161–170PubMedCrossRefGoogle Scholar
  234. Shriram V, Kumar V, Devarumath RM, Khare TS, Wani SH (2016) MicroRNAs as potential targets for abiotic stress tolerance in plants. Front Plant Sci 7:817PubMedPubMedCentralCrossRefGoogle Scholar
  235. Shu S, Yuan L-Y, Guo S-R, Sun J, Yuan Y-H (2013) Effects of exogenous spermine on chlorophyll fluorescence, antioxidant system and ultrastructure of chloroplasts in Cucumis sativus L. under salt stress. Plant Physiol Biochem 63:209–216PubMedCrossRefGoogle Scholar
  236. Silva P, Gerós H (2009) Regulation by salt of vacuolar H+-ATPase and H+−pyrophosphatase activities and Na+/H+ exchange. Plant Signal Behav 4(8):718–726PubMedPubMedCentralCrossRefGoogle Scholar
  237. Soussi M, Lluch C, Ocana A, Norero A (1999) Comparative study of nitrogen fixation and carbon metabolism in two chick-pea (Cicer arietinum L.) cultivars under salt stress. J Exp Bot 50(340):1701–1708CrossRefGoogle Scholar
  238. Srivastava A, Srivastava S, Lokhande V, D’souza S, Suprasanna P (2016) Salt stress reveals differential antioxidant and energetics responses in glycophyte (Brassicajuncea L.) and halophyte (Sesuvium portulacastrum L.). Front. Redox Homeostasis Managers in Plants under Environmental Stresses 3:20Google Scholar
  239. Steiger HM, Beck E, Beck R (1977) Oxygen concentration in isolated chloroplasts during photosynthesis. Plant Physiol 60(6):903–906PubMedPubMedCentralCrossRefGoogle Scholar
  240. Stepien P, Johnson GN (2009) Contrasting responses of photosynthesis to salt stress in the glycophyte Arabidopsis and the halophyte Thellungiella: role of the plastid terminal oxidase as an alternative electron sink. Plant Physiol 149(2):1154–1165PubMedPubMedCentralCrossRefGoogle Scholar
  241. Steppuhn H, Falk K, Zhou R (2010) Emergence, height, grain yield and oil content of camelina and canola grown in saline media. Can J Soil Sci 90(1):151–164CrossRefGoogle Scholar
  242. Steudle E (2000) Water uptake by roots: effects of water deficit. J Exp Bot 51(350):1531–1542PubMedCrossRefGoogle Scholar
  243. Sun X, Xu L, Wang Y, Yu R, Zhu X, Luo X, Gong Y, Wang R, Limera C, Zhang K (2015) Identification of novel and salt-responsive miRNAs to explore miRNA-mediated regulatory network of salt stress response in radish (Raphanus sativus L.) BMC Genomics 16(1):197PubMedPubMedCentralCrossRefGoogle Scholar
  244. Szabolcs I (1994) Soils and salinization. In: Pessarakli M (ed) Handbook of plant and crop stress, Marcel Dekker, New York, pp 3–11Google Scholar
  245. Takeda S, Matsuoka M (2008) Genetic approaches to crop improvement: responding to environmental and population changes. Nat Rev Genet 9(6):444–457Google Scholar
  246. Tang X, Mu X, Shao H, Wang H, Brestic M (2015) Global plant-responding mechanisms to salt stress: physiological and molecular levels and implications in biotechnology. Crit Rev Biotechnol 35(4):425–437PubMedCrossRefGoogle Scholar
  247. Tardieu F, Davies W (1993) Integration of hydraulic and chemical signalling in the control of stomatal conductance and water status of droughted plants. Plant Cell Environ 16(4):341–349CrossRefGoogle Scholar
  248. Tattini M, Gucci R, Coradeschi MA, Ponzio C, Everard JD (1995) Growth, gas exchange and ion content in Olea europaea plants during salinity stress and subsequent relief. Physiol Plant 95(2):203–210CrossRefGoogle Scholar
  249. Tavakkoli E, Fatehi F, Coventry S, Rengasamy P, McDonald GK (2011) Additive effects of Na+ and Cl–ions on barley growth under salinity stress. J Exp Bot 62(6):2189–2203PubMedPubMedCentralCrossRefGoogle Scholar
  250. Tester M, Davenport R (2003) Na+ tolerance and Na+ transport in higher plants. Ann Bot 91(5):503–527PubMedPubMedCentralCrossRefGoogle Scholar
  251. Tsugane K, Kobayashi K, Niwa Y, Ohba Y, Wada K, Kobayashi H (1999) A recessive Arabidopsis mutant that grows photoautotrophically under salt stress shows enhanced active oxygen detoxification. Plant Cell 11(7):1195–1206PubMedPubMedCentralCrossRefGoogle Scholar
  252. Turan MA, Katkat V, Taban S (2007) Salinity-induced stomatal resistance, proline, chlorophyll and ion concentrations of bean. Int J Agric Res 2(5):483–488CrossRefGoogle Scholar
  253. Valiollah R (2013) Effect of salinity stress on yield, component characters and nutrient compositions in rapeseed (Brassica napus L.) genotypes. Agric Trop Subtrop 46(2):58–63Google Scholar
  254. Vamerali T, Saccomani M, Bona S, Mosca G, Guarise M, Ganis A (2003) A comparison of root characteristics in relation to nutrient and water stress in two maize hybrids. In: Roots: the dynamic interface between plants and the earth. Springer, pp 157–167Google Scholar
  255. Van Hoorn J, Katerji N, Hamdy A, Mastrorilli M (2001) Effect of salinity on yield and nitrogen uptake of four grain legumes and on biological nitrogen contribution from the soil. Agric Water Manag 51(2):87–98CrossRefGoogle Scholar
  256. Walker R, Sedgley M, Blesing M, Douglas T (1984) Anatomy, ultrastructure and assimilate concentrations of roots of citrus genotypes differing in ability for salt exclusion. J Exp Bot 35(10):1481–1494CrossRefGoogle Scholar
  257. Wang D, Shannon M (1999) Emergence and seedling growth of soybean cultivars and maturity groups under salinity. Plant Soil 214(1):117–124CrossRefGoogle Scholar
  258. Wang L, Zhao H, Chen D, Li L, Sun H, Lou Y, Gao Z (2016) Characterization and primary functional analysis of a bamboo NAC gene targeted by miR164b. Plant Cell Rep 35(6):1371–1383PubMedCrossRefGoogle Scholar
  259. Welbaum GE, Tissaoui T, Bradford KJ (1990) Water relations of seed development and germination in muskmelon (Cucumis melo L.) III. Sensitivity of germination to water potential and abscisic acid during development. Plant Physiol 92(4):1029–1037PubMedPubMedCentralCrossRefGoogle Scholar
  260. Wise RR, Naylor AW (1987) Chilling-enhanced photooxidation evidence for the role of singlet oxygen and superoxide in the breakdown of pigments and endogenous antioxidants. Plant Physiol 83(2):278–282PubMedPubMedCentralCrossRefGoogle Scholar
  261. Wu S-J, Ding L, Zhu J-K (1996) SOS1, a genetic locus essential for salt tolerance and potassium acquisition. Plant Cell 8(4):617–627PubMedPubMedCentralCrossRefGoogle Scholar
  262. Wu C-A, Yang G-D, Meng Q-W, Zheng C-C (2004) The cotton GhNHX1 gene encoding a novel putative tonoplast Na+/H+ antiporter plays an important role in salt stress. Plant Cell Physiol 45(5):600–607PubMedCrossRefGoogle Scholar
  263. Xu D, Duan X, Wang B, Hong B, Ho T-HD, Wu R (1996) Expression of a late embryogenesis abundant protein gene, HVA1, from barley confers tolerance to water deficit and salt stress in transgenic rice. Plant Physiol 110(1):249–257PubMedPubMedCentralCrossRefGoogle Scholar
  264. Xu S, Hu B, He Z, Ma F, Feng J, Shen W, Yang J (2011) Enhancement of salinity tolerance during rice seed germination by presoaking with hemoglobin. Int J Mol Sci 12(4):2488–2501PubMedPubMedCentralCrossRefGoogle Scholar
  265. Xue D, Huang Y, Zhang X, Wei K, Westcott S, Li C, Chen M, Zhang G, Lance R (2009) Identification of QTLs associated with salinity tolerance at late growth stage in barley. Euphytica 169(2):187–196CrossRefGoogle Scholar
  266. Yadav R, Flowers T, Yeo A (1996) The involvement of the transpirational bypass flow in sodium uptake by high-and low-sodium-transporting lines of rice developed through intravarietal selection. Plant Cell Environ 19(3):329–336CrossRefGoogle Scholar
  267. Yamaguchi T, Blumwald E (2005) Developing salt-tolerant crop plants: challenges and opportunities. Trends Plant Sci 10(12):615–620PubMedCrossRefGoogle Scholar
  268. Yang Q, Chen Z-Z, Zhou X-F, Yin H-B, Li X, Xin X-F, Hong X-H, Zhu J-K, Gong Z (2009) Overexpression of SOS (Salt Overly Sensitive) genes increases salt tolerance in transgenic Arabidopsis. Mol Plant 2(1):22–31PubMedCrossRefGoogle Scholar
  269. Yasuta Y, Kokubun M (2014) Salinity tolerance of super-nodulating soybean genotype En-b0-1. Plant Production Science 17(1):32–40CrossRefGoogle Scholar
  270. Yeo A, Yeo M, Flowers T (1987) The contribution of an apoplastic pathway to sodium uptake by rice roots in saline conditions. J Exp Bot 38(7):1141–1153CrossRefGoogle Scholar
  271. Yilmaz H, Kina A (2008) The influence of NaCl salinity on some vegetative and chemical changes of strawberries (Fragaria x ananssa L.) Afr J Biotechnol 7(18)Google Scholar
  272. Yousif S, Al-Saadawi I (1997) Effect of salinity and nitrogen fertilization on osmotic potential and elements accumulation in four genotypes of broad bean Vicia faba L. Dirasat Agric Sci 24:395–401Google Scholar
  273. Yupsanis T, Moustakas M, Eleftheriou P, Damianidou K (1994) Protein phosphorylation-dephosphorylation in alfalfa seeds germinating under salt stress. J Plant Physiol 143(2):234–240CrossRefGoogle Scholar
  274. Zekri M, Parsons LR (1989) Growth and root hydraulic conductivity of several citrus rootstocks under salt and polyethylene glycol stresses. Physiol Plant 77(1):99–106CrossRefGoogle Scholar
  275. Zhang B, Wang Q (2015) MicroRNA-based biotechnology for plant improvement. J Cell Physiol 230(1):1–15PubMedCrossRefGoogle Scholar
  276. Zhang H, Han B, Wang T, Chen S, Li H, Zhang Y, Dai S (2011) Mechanisms of plant salt response: insights from proteomics. J Proteome Res 11(1):49–67PubMedCrossRefGoogle Scholar
  277. Zhao G, Ma B, Ren C (2007) Growth, gas exchange, chlorophyll fluorescence, and ion content of naked oat in response to salinity. Crop Sci 47(1):123–131CrossRefGoogle Scholar
  278. Zhao G, Yu H, Liu M, Lu Y, Ouyang B (2017) Identification of salt-stress responsive microRNAs from Solanum lycopersicum and Solanum pimpinellifolium. Plant Growth Regul:1–12Google Scholar
  279. Zhu J-K (2000) Genetic analysis of plant salt tolerance using Arabidopsis. Plant Physiol 124(3):941–948PubMedPubMedCentralCrossRefGoogle Scholar
  280. Zhu J-K (2001a) Plant salt stress. In: eLS. John Wiley & Sons, Ltd. https://doi.org/10.1002/9780470015902.a0001300.pub2
  281. Zhu J-K (2001b) Plant salt tolerance. Trends Plant Sci 6(2):66–71PubMedCrossRefGoogle Scholar
  282. Zhu J-K, Liu J, Xiong L (1998) Genetic analysis of salt tolerance in Arabidopsis: evidence for a critical role of potassium nutrition. Plant Cell 10(7):1181–1191PubMedPubMedCentralCrossRefGoogle Scholar
  283. Zidan M, Elewa M (1995) Effect of salinity on germination, seedling growth and some metabolic changes in four plant species (Umbelliferae). Indian J Plant Physiol 38:57–61Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Sunita Kataria
    • 1
  • Sandeep Kumar Verma
    • 2
  1. 1.School of Biochemistry, Devi Ahilya UniversityIndoreIndia
  2. 2.Department of BiotechnologyInnovate Mediscience IndiaIndoreIndia

Personalised recommendations