Advertisement

A Note on the Existence for a Model of Turbulent Flows Through Porous Media

  • Hermenegildo Borges de Oliveira
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 230)

Abstract

In this work, turbulent flows through porous media are considered. We begin by making a historical review of the equations governing laminar flows in porous media, from Darcy’s law to Darcy–Brinkman–Forchheimer’s more general model. Using the double averaging concept (in time and in space) we explain how to obtain the more general system of equations that governs turbulent flows through porous media. For the one-equation turbulent problem in the steady-state we show that the known existence results can be generalized to any space dimension \(d\ge 2\) and for a more general function of turbulence production.

Keywords

Turbulence \(k-\)epsilon modelling Porous media General existence 

References

  1. 1.
    Darcy, H.P.C.: Les Fontaines Publiques de la Ville de Dijon. Victor Dalmont, Paris (1856)Google Scholar
  2. 2.
    Hazen, A.: Some physical properties of sand and gravels with special reference to their use in filtration, p. 541. Twenty-fourth Annual Report, Massachusetts State Board of Health (1893)Google Scholar
  3. 3.
    Brinkman, H.C.: A calculation of viscous force exerted by a flowing fluid on a dense swarm of particles. Appl. Sci. Res. A1, 27–34 (1947)zbMATHGoogle Scholar
  4. 4.
    Dupuit, J.: Etudes théoriques et pratiques sur le mouvement des eaux dans les canaux découverts et à travers les terrains perméables, 2nd edn. Dunod, Paris (1863)Google Scholar
  5. 5.
    Forchheimer, P.: Über die Ergiebigkeit von Brunnen-Anlagen und Sickerschlitzen, Z. Architekt. Ing.-Ver. Hannover 32, 539–563 (1886)Google Scholar
  6. 6.
    Joseph, D.D., Nield, D.A., Papanicolaou, G.: Nonlinear equation governing ow in a saturated porous medium. Water Resources Research 18, 1049–1052 (1982); 19: 591CrossRefGoogle Scholar
  7. 7.
    Nakayama, A.: Non-Darcy Couette flow in a porous medium filled with an inelastic non-Newtonian fluid. Trans. ASME J. Fluids Eng. 114, 642–647 (1992)CrossRefGoogle Scholar
  8. 8.
    Kuznetsov, A.V.: Analytical investigation of heat transfer in Couette flow through a porous medium utilizing the Brinkman-Forchheimer-extended Darcy model. Acta Mechanica 129, 13–24 (1998)CrossRefGoogle Scholar
  9. 9.
    Hsu, C.T., Cheng, P.: Thermal dispersion in a porous medium. Int. J. Heat Mass Transf. 33, 1587–1597 (1990)CrossRefGoogle Scholar
  10. 10.
    Dybbs, A., Edwards, R.V.: A new look at porous media fluid Mechanics - Darcy to turbulent. In: Bear, J., Corapcioglu, M.Y. (eds.) Fundamentals of Transport Phenomena in Porous Media, pp. 199–254. Martinus Nijhof, Boston (1984)CrossRefGoogle Scholar
  11. 11.
    Vafai, K., Kim, S.: Fluid mechanics of the interface region between a porous medium and a fluid layer - an exact solution. Int. J. Heat Fluid Flow 11, 254–256 (1990)CrossRefGoogle Scholar
  12. 12.
    Chacón-Rebollo, T., Lewandowski, R.: Mathematical and Numerical Foundations of Turbulence Models and Applications. Springer, New York (2014)CrossRefGoogle Scholar
  13. 13.
    de Lemos, M.J.S.: Turbulence in Porous Media, 2nd edn, p. 2012. Elsevier, Waltham (2012)Google Scholar
  14. 14.
    de Oliveira, H.B., Paiva, A.: On a one equation turbulent model with feedbacks. In: Pinelas, S., et al. (eds.) Differential and difference equations with applications, vol. 164, pp. 51–61. Springer Proceedings in Mathematics and Statistics (2016)Google Scholar
  15. 15.
    Getachewa, D., Minkowycz, W.J., Lage, J.L.: A modified form of the \(k-\)epsilon model for turbulent flow of an incompressible fluid in porous media. Int. J. Heat Mass Transf. 43, 2909–2915 (2000)CrossRefGoogle Scholar
  16. 16.
    Antohe, B.V., Lage, J.L.: A general two-equation macroscopic turbulence model for incompressible flow in porous media. Int. J. Heat Mass Transf. 40, 3013–3024 (1997)CrossRefGoogle Scholar
  17. 17.
    Nakayama, A., Kuwahara, F.: A macroscopic turbulence model for flow in a porous medium. ASME J. Fluids Eng. 121, 427–433 (1999)CrossRefGoogle Scholar
  18. 18.
    Pedras, M.H.J.: On the definition of turbulent kinetic energy for flow in porous media. Int. Commun. Heat Mass Transf. 27(2), 211–220 (2000)CrossRefGoogle Scholar
  19. 19.
    de Oliveira, H.B., Paiva, A.: A stationary one-equation turbulent model with applications in porous media. J. Math. Fluid Mech. (2017). Online First: 12 May 2017Google Scholar
  20. 20.
    de Oliveira, H.B., Paiva, A.: Existence for a one-equation turbulent model with strong nonlinearities. J. Elliptic Parabol. Equ. 3(1–2), 65–91 (2017)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Galdi, G.P.: An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Steady-state problems, p. 2011. Springer, New York (2011)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.FCT - Universidade de AgarveFaroPortugal

Personalised recommendations