Skip to main content

Asymptotic Properties of Nonoscillatory Solutions of Third-Order Delay Difference Equations

  • Conference paper
  • First Online:
Differential and Difference Equations with Applications (ICDDEA 2017)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 230))

  • 936 Accesses

Abstract

We study a third-order delay trinomial difference equation. We transform this equation to a binomial third-order difference equation with quasidifferences. Using comparison theorems with a certain first order delay difference equation we establish results on asymptotic properties of nonoscillatory solutions of the studied equation. We give an easily verifiable criterium which ensures that all nonoscillatory solutions tend to zero.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Agarwal, R.P., Bohner, M., Grace, S.R., O’Regan, D.: Discrete Oscillation Theory. Hindawi Publishing Corporation, New York (2005)

    Book  Google Scholar 

  2. Aktaş, M.F., Mustafa, F., Tiryaki, A., Zafer, A.: Oscillation of third-order nonlinear delay difference equations. Turk. J. Math. 36(3), 422–436 (2012)

    MathSciNet  MATH  Google Scholar 

  3. Andruch-Sobiło, A., Migda, M.: Bounded solutions of third order nonlinear difference equations. Rocky Mt. J. Math. 36(1), 23–34 (2006)

    Article  MathSciNet  Google Scholar 

  4. Baculíková, B., Džurina, J.: Comparison theorems for the third-order delay trinomial differential equations. Adv. Differ. Equ. (2010). (Art. ID 160761)

    Google Scholar 

  5. Baculíková, B., Džurina, J., Rogovchenko, Y.: Oscillation of third order trinomial differential equations. Appl. Math. Comput. 218, 7023–7033 (2012)

    MathSciNet  MATH  Google Scholar 

  6. Chatzarakis, G.E., Koplatadze, R., Stavroulakis, I.P.: Oscillation criteria of first order linear difference equations with delay argument. Nonlinear Anal. 68(4), 994–1005 (2008)

    Article  MathSciNet  Google Scholar 

  7. Chatzarakis, G.E., Koplatadze, R., Stavroulakis, I.P.: Optimal oscillation criteria of first order linear difference equations with delay argument. Pac. J. Math. 235(1), 15–33 (2008)

    Article  Google Scholar 

  8. Došlá, Z., Kobza, A.: On third-order linear difference equations involving quasi-differences. Adv. Differ. Equ.(2006). (Art. ID 65652)

    Google Scholar 

  9. Drozdowicz, A., Popenda, J.: Asymptotic behavior of the solutions of the 2nd-order difference equation. Proc. Am. Math. Soc. 99(1), 135–140 (1987)

    Article  Google Scholar 

  10. Džurina, J., Kotorová, R.: Properties of the third order trinomial differential equations with delay argument. Nonlinear Anal. 71, 1995–2002 (2009)

    Article  MathSciNet  Google Scholar 

  11. Erbe, L.H., Zhang, B.G.: Oscillation of discrete analogues of delay equations. Differ. Integral Equ. 2, 300–309 (1989)

    MathSciNet  MATH  Google Scholar 

  12. Graef, J., Thandapani, E.: Oscillatory and asymptotic behaviour of solutions of third-order delay difference equations. Funkc. Ekvacioj 42, 355–369 (1999)

    MATH  Google Scholar 

  13. Györi, I., Ladas, G.: Oscillation Theory of Delay Differential Equations with Applications. Clarendon Press, Oxford (1991)

    MATH  Google Scholar 

  14. Kelley, W.G., Peterson, A.C.: Difference Equations. An Introduction with Applications. Harcourt Academic Press, San Diego (2001)

    MATH  Google Scholar 

  15. Ladas, G., Philos, ChG, Sficas, Y.G.: Sharp conditions for the oscillation of delay difference equations. J. Appl. Math. Simul. 2, 101–111 (1989)

    Article  MathSciNet  Google Scholar 

  16. Liu, Z., Wang, L., Kimb, G., Kang, S.: Existence of uncountably many bounded positive solutions for a third order nonlinear neutral delay difference equation. Comput. Math. Appl. 60, 2399–2416 (2010)

    Article  MathSciNet  Google Scholar 

  17. Migda, M.: On the discrete version of generalized Kiguradze’s lemma. Fasc. Math. 35, 77–83 (2005)

    MathSciNet  MATH  Google Scholar 

  18. Popenda, J., Schmeidel, E.: Nonoscillatory solutions of third order difference equations. Port. Math. 49, 233–239 (1992)

    MathSciNet  MATH  Google Scholar 

  19. Saker, S.H.: Oscillation of third-order difference equations. Port. Math. 61, 249–257 (2004)

    MathSciNet  MATH  Google Scholar 

  20. Saker, S.H., Alzabut, J.O., Mukheimer, A.: On the oscillatory behavior for a certain class of third order nonlinear delay difference equations. Electron. J. Qual. Theory Differ. Equ. (67) (2010)

    Google Scholar 

  21. Saker, S.H.: Oscillation of a certain class of third order nonlinear difference equations. Bull. Malays. Math. Sci. Soc. 35, 651–669 (2012)

    MathSciNet  MATH  Google Scholar 

  22. Trench, W.F.: Canonical forms and principal systems for general disconjugate equations. Trans. Am. Math. Soc. 189, 319–327 (1974)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Ministry of Science and Higher Education of Poland (04/43/DSPB/0090).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Małgorzata Migda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gleska, A., Migda, M. (2018). Asymptotic Properties of Nonoscillatory Solutions of Third-Order Delay Difference Equations. In: Pinelas, S., Caraballo, T., Kloeden, P., Graef, J. (eds) Differential and Difference Equations with Applications. ICDDEA 2017. Springer Proceedings in Mathematics & Statistics, vol 230. Springer, Cham. https://doi.org/10.1007/978-3-319-75647-9_27

Download citation

Publish with us

Policies and ethics