\(\log 0 = \log \infty = 0\) and Applications

Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 230)


In this paper, we will show that \(\log 0 = \log \infty =0\) by the division by zero \(z/0=0\) and its fundamental applications. In particular, we will know that the division by zero is our elementary and fundamental mathematics.


Division by zero \(1/0=0/0=0 \) \(\log 0 =0\) \(\log \infty =0\) \(0^0=1.0\) \({e^0= 1, 0}\) \(\cos 0 = 1, 0\) Y-field Point at infinity Infinity Green function Robin constant Capacity Riemann mapping function Laurent expansion 



The authors wish to express their deep thanks Professor Haydar Akca for his kind invitation of the papers [9, 10] based on recent results for the division by zero. Saitoh wishes to express his sincere thanks Professors James .A.D.W. Anderson, J. A. Bergstra, Lukasz T. Stepien and Dr. Masako Takagi for their valuable information and suggestions.


  1. 1.
    Ahlfors, L.V. : Complex Analysis. McGraw-Hill Book Company, New York (1966)Google Scholar
  2. 2.
    Barukčić, J. P., Barukčić, I. : Anti Aristotle - The Division Of Zero By Zero,, Friday, June 5, (2015) Ilija Barukčić, Jever, Germany. All rights reserved. Friday, June 5, 20, 44–59 (2015)Google Scholar
  3. 3.
    Bergstra, J.A.: Conditional Values in Signed Meadow Based Axiomatic Probability Calculus (2016). arXiv:1609.02812v2 [math.LO]
  4. 4.
    Bergstra, J.A., Hirshfeld, Y., Tucker, J.V.: Meadows and the equational specification of division (2009). arXiv:0901.0823v1 [math.RA]MathSciNetCrossRefGoogle Scholar
  5. 5.
    Castro, L.P., Saitoh, S.: Fractional functions and their representations. Complex Anal. Oper. Theory 7(4), 1049–1063 (2013)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Courant, R., Hilbert, D.: Methods of Mathematical Physics, vol. 1. Interscience Publishers Inc., New York (1953)zbMATHGoogle Scholar
  7. 7.
    Kuroda, M., Michiwaki, H., Saitoh, S., Yamane, M.: New meanings of the division by zero and interpretations on \(100/0=0\) and on \(0/0=0\). Int. J. Appl. Math. 27(92), 191–198 (2014).
  8. 8.
    Matsuura, T., Saitoh,S.: Matrices and division by zero z/0=0. Adv. Linear Algebr. Matrix Theory 6, 51–58 (2016). Published Online June 2016 in SciRes.,
  9. 9.
    Michiwaki, H., Saitoh, S., Yamada, M.: Reality of the division by zero \(z/0=0\). IJAPM Int. J. Appl. Phys. Math. 6 (2015).
  10. 10.
    Michiwaki, H., Okumura, H., Saitoh, S.: Division by zero \(z/0 = 0\) in Euclidean spaces. Int. J. Math. Comput. 28(1), 1–16 (2017)Google Scholar
  11. 11.
    Okumura, H., Saitoh, S., Matsuura, T.: Relations of \(0\) and \(\infty \). J. Technol. Soc. Sci. (JTSS) 1(1), 70–77 (2017)Google Scholar
  12. 12.
    Polyanin, A.D., Zaitsev, V.F.: Handbook of Exact Solutions for Ordinary Differential Equations. CRC Press, Boca Raton (2003)Google Scholar
  13. 13.
    Reis, T.S., Anderson, J.A.D.W.: Transdifferential and transintegral calculus. In: Proceedings of the World Congress on Engineering and Computer Science 2014, vol. I, pp. 22–24. WCECS 2014 October, San Francisco, USA (2014)Google Scholar
  14. 14.
    Reis, T.S., Anderson, J.A.D.W. : Transreal calculus. IAENG Int. J. Appl. Math. IJAM 45(1), 06 (2015)Google Scholar
  15. 15.
    Romig, H.G.: Discussions: early history of division by zero. Am. Math. Monthly 31(8), 387–389 (1924)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Saitoh, S.: Generalized inversions of Hadamard and tensor products for matrices. Adv. Linear Algebra Matrix Theory. 4(2), 87–95 (2014). Scholar
  17. 17.
    Saitoh, S.: A reproducing kernel theory with some general applications. In: Qian, T., Rodino, L. (eds.), Mathematical Analysis, Probability and Applications - Plenary Lectures: Isaac 2015, Macau, China, Springer Proceedings in Mathematics and Statistics, vol. 177, pp. 151–182. Springer, Berlin (2016)Google Scholar
  18. 18.
    Saitoh, S., Sawano,Y.: Theory of Reproducing Kernels and Applications, Developments in Mathematics, vol. 44. Springer, Berlin (2016)CrossRefGoogle Scholar
  19. 19.
    Takahasi, S.-E., Tsukada, M., Kobayashi, Y.: Classification of continuous fractional binary operations on the real and complex fields. Tokyo J. Math. 38(2), 369–380 (2015)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.NejiLaw Inc.TokyoJapan
  2. 2.Gunma UniversityKiryuJapan
  3. 3.Institute of Reproducing KernelsKiryuJapan

Personalised recommendations