Skip to main content

Hyperbolicity and Solvability for Linear Systems on Time Scales

  • Conference paper
  • First Online:
Book cover Differential and Difference Equations with Applications (ICDDEA 2017)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 230))

  • 884 Accesses

Abstract

We believe that the difference between time scale systems and ordinary differential equations is not as big as people use to think. We consider linear operators that correspond to linear dynamic systems on time scales. We study solvability of these operators in \({\mathbb L}^\infty \). For ordinary differential equations such solvability is equivalent to hyperbolicity of the considered linear system. Using this approach and transformations of the time variable, we spread the concept of hyperbolicity to time scale dynamics. We provide some analogs of well-known facts of Hyperbolic Systems Theory, e.g. the Lyapunov–Perron theorem on stable manifold.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aulbach, B., Hilger, S.: Linear dynamic processes with inhomogenous time scale. In: Nonlinear Dynamics and Quantum Dynamical Systems (Gaussig, 1990), Math. Res., vol. 59, pp. 9–20. Akademie, Berlin (1990)

    Google Scholar 

  2. Bodine, S., Lutz, D.A.: Exponential functions on time scales: their asymptotic behavior and calculation. Dyn. Syst. Appl. 12, 23–43 (2003)

    MathSciNet  MATH  Google Scholar 

  3. Bohner, M.: Some oscillation criteria for first order delay dynamic equations. Far East J. Appl. Math. 18(3), 289–304 (2005)

    MathSciNet  MATH  Google Scholar 

  4. Bohner, M., Lutz, D.A.: Asymptotic behavior of dynamic equations on time scales. J. Differ. Equ. Appl. 7(1), 21–50 (2001)

    Article  MathSciNet  Google Scholar 

  5. Bohner, M., Martynyuk, A.A.: Elements of stability theory of A.M. Liapunov for dynamic equations on time scales. Nonlinear Dyn. Syst. Theory 7(3), 225–251 (2007)

    MathSciNet  MATH  Google Scholar 

  6. Bohner, M., Peterson, A.: Dynamic Equations on Time Scales. An Introduction with Applications. Birkhäuser Boston Inc., Boston (2001)

    Book  Google Scholar 

  7. Bohner, M., Peterson, A.: Advances in Dynamic Equations on Time Scales. Birkhäuser Boston Inc., Boston, MA (2003)

    Book  Google Scholar 

  8. Bylov, B.F., Vinograd, R.E., Grobman, D.M., Nemytskii, V.V.: Teoriya pokazatelei Lyapunova i ee prilozheniya k voprosam ustoichivosti (Theory of Lyapunov Exponents and its Application to Problems of Stability). Nauka, Moscow (1966), 576 p. (Russian)

    Google Scholar 

  9. Choi, S.K., Im, D.M., Koo, N.: Stability of linear dynamic systems on time scales. Adv. Differ. Equ. 2008, 1–12 (2008). Article ID 670203

    MathSciNet  MATH  Google Scholar 

  10. Coppel, W.A.: Dichotomies in Stability Theory. Lecture Notes in Mathematics, vol. 629. Springer, Berlin-Heidelberg-New York (1978)

    MATH  Google Scholar 

  11. DaCunha, J.J.: Stability for time varying linear dynamic systems on time scales. J. Comput. Appl. Math. 176(2), 381–410 (2005)

    Article  MathSciNet  Google Scholar 

  12. Du, N.H., Tien, L.H.: On the exponential stability of dynamic equations on time scales. J. Math. Anal. Appl. 331, 1159–1174 (2007)

    Article  MathSciNet  Google Scholar 

  13. Gard, T., Hoffacker, J.: Asymptotic behavior of natural growth on time scales. Dynam. Syst. Appl. 12(1–2), 131–148 (2003)

    MathSciNet  MATH  Google Scholar 

  14. Gantmacher, F.R.: The Theory of Matrices. Chelsea Publishing Company, New York (1958)

    MATH  Google Scholar 

  15. Hoffacker, J., Tisdell, C.C.: Stability and instability for dynamic equations on time scales. Comput. Math. Appl. 49(9–10), 1327–1334 (2005)

    Article  MathSciNet  Google Scholar 

  16. Hovhannisyan, G.: Asymptotic stability for dynamic equations on time scales. Adv. Differ. Equ. 2006, 1–17 (2006). Article ID 18157

    Article  MathSciNet  Google Scholar 

  17. Hovhannisyan, G.: Asymptotic stability for \(2\times 2\) linear dynamic systems on time scales. Int. J. Differ. Equ. 2(1), 105–121 (2007)

    MathSciNet  MATH  Google Scholar 

  18. Kryzhevich, S., Nazarov, A.: Stability by linear approximation for time scale dynamical systems. Appl. J. Math. Anal. 449, 1911–1934 (2017)

    Article  MathSciNet  Google Scholar 

  19. Kloeden, P.E., Zmorzynska, A.: Lyapunov functions for linear nonautonomous dynamical equations on time scales. Adv. Differ. Equ. 2006, 1–10 (2006). Article ID69106

    Article  MathSciNet  Google Scholar 

  20. Li, W.N.: Some pachpatte type inequalities on time scales. Comput. Math. Appl. 57, 275–282 (2009)

    Article  MathSciNet  Google Scholar 

  21. Lyapunov, A.M.: General Problem of the Stability of Motion. CRC Press, Boca Raton (1992)

    MATH  Google Scholar 

  22. Maizel, A.D.: On stability of solutions of systems of differential equations. Trudi Uralskogo Politekhnicheskogo Instituta, Mathematics 51, 20–50 (1954). (Russian)

    MathSciNet  Google Scholar 

  23. Martynyuk, A.A.: On the exponential stability of a dynamical system on a time scale. Dokl. Akad. Nauk. 421, 312–317 (2008)

    MathSciNet  Google Scholar 

  24. Pachpatte, D.B.: Explicit estimates on integral inequalities with time scale. J. Inequal. Pure Appl. Math. 7:4, 1–8 (2006). Article 143

    MATH  Google Scholar 

  25. Perron, O.: Über Stabilität und Asymptotisches Verhalten der Integrale von Differentialgleichungssystemen. Math. Zeitschrift. 29, 129–160 (1928). (German)

    Article  MathSciNet  Google Scholar 

  26. Pliss, V.A.: Bounded solutions of inhomogeneous linear systems of differential equations, In: Problems of Asymptotic Theory of Nonlinear Oscillations, pp. 168–173. Kiev (1977)

    Google Scholar 

  27. Pliss, V.A.: Integral sets of periodic systems of differential equations. Nauka, Moscow (1977). (Russian)

    MATH  Google Scholar 

  28. Pötzsche, C., Siegmund, S., Wirth, F.: A spectral characterization of exponential stability for linear time-invariant systems on time scales. Discret. Contin. Dyn. Syst. 9, 1223–1241 (2003)

    Article  MathSciNet  Google Scholar 

  29. Reinfelds, A., Sermone, L.: Stability of impulsive differential systems. Abstr. Appl. Anal. 2013, 11 (2013). Article ID 253647

    Article  MathSciNet  Google Scholar 

  30. Todorov, D.: Generalizations of analogs of theorems of Maizel and Pliss and their application in Shadowing Theory. Discret. Contin. Dyn. Syst. 33:9, 4187–4205

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author was partially supported by RFBR grant 18-01-00230-a.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey Kryzhevich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kryzhevich, S. (2018). Hyperbolicity and Solvability for Linear Systems on Time Scales. In: Pinelas, S., Caraballo, T., Kloeden, P., Graef, J. (eds) Differential and Difference Equations with Applications. ICDDEA 2017. Springer Proceedings in Mathematics & Statistics, vol 230. Springer, Cham. https://doi.org/10.1007/978-3-319-75647-9_18

Download citation

Publish with us

Policies and ethics