Lectures on Runtime Verification pp 135-175 | Cite as
Specification-Based Monitoring of Cyber-Physical Systems: A Survey on Theory, Tools and Applications
- 58 Citations
- 2.1k Downloads
Abstract
The term Cyber-Physical Systems (CPS) typically refers to engineered, physical and biological systems monitored and/or controlled by an embedded computational core. The behaviour of a CPS over time is generally characterised by the evolution of physical quantities, and discrete software and hardware states. In general, these can be mathematically modelled by the evolution of continuous state variables for the physical components interleaved with discrete events. Despite large effort and progress in the exhaustive verification of such hybrid systems, the complexity of CPS models limits formal verification of safety of their behaviour only to small instances. An alternative approach, closer to the practice of simulation and testing, is to monitor and to predict CPS behaviours at simulation-time or at runtime. In this chapter, we summarise the state-of-the-art techniques for qualitative and quantitative monitoring of CPS behaviours. We present an overview of some of the important applications and, finally, we describe the tools supporting CPS monitoring and compare their main features.
Notes
Acknowledgment
E. Bartocci and D. Ničković acknowledge the partial support of the EU ICT COST Action IC1402 on Runtime Verification beyond Monitoring (ARVI) and of the HARMONIA (845631) project, funded by a national Austrian grant from Austrian FFG under the program IKT der Zukunft. E. Bartocci acknowledges the partial support of the Austrian National Research Network S 11405-N23 (RiSE/SHiNE) of the Austrian Science Fund (FWF). G. Fainekos acknowledges the support of the NSF CAREER award 1350420.
References
- 1.Abbas, H., Fainekos, G.: Computing descent direction of MTL robustness for non-linear systems. In: Proceedings of ACC 2013: The 2013 American Control Conference, pp. 4405–4410 (2013)Google Scholar
- 2.Abbas, H., Fainekos, G.E., Sankaranarayanan, S., Ivancic, F., Gupta, A.: Probabilistic temporal logic falsification of cyber-physical systems. ACM Trans. Embed. Comput. Syst. 12(s2), 95:1–95:30 (2013)Google Scholar
- 3.Abbas, H., Hoxha, B., Fainekos, G., Ueda, K.: Robustness-guided temporal logic testing and verification for stochastic cyber-physical systems. In: Proceedings of the 4th Annual IEEE International Conference on Cyber Technology in Automation, Control and Intelligent, pp. 1–6. IEEE (2014)Google Scholar
- 4.Abbas, H., Mittelmann, H., Fainekos, G.E.: Formal property verification in a conformance testing framework. In: Proceedings of MEMOCODE 2014: The 12th ACM-IEEE International Conference on Formal Methods and Models for System Design, pp. 155–164. IEEE (2014)Google Scholar
- 5.Abbas, H., Rodionova, A., Bartocci, E., Smolka, S.A., Grosu, R.: Quantitative regular expressions for Arrhythmia detection algorithms. In: Feret, J., Koeppl, H. (eds.) CMSB 2017. LNCS, vol. 10545, pp. 23–39. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67471-1_2 CrossRefGoogle Scholar
- 6.Abbas, H., Winn, A., Fainekos, G.E., Julius, A.A.: Functional gradient descent method for metric temporal logic specifications. In: Proceedings of ACC 2014: The American Control Conference, pp. 2312–2317. IEEE (2014)Google Scholar
- 7.Akazaki, T., Hasuo, I.: Time robustness in MTL and expressivity in hybrid system falsification. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9207, pp. 356–374. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21668-3_21 CrossRefGoogle Scholar
- 8.Alur, R., Feder, T., Henzinger, T.A.: The benefits of relaxing punctuality. J. ACM 43(1), 116–146 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
- 9.Annapureddy, Y.S.R., Fainekos, G.E.: Ant colonies for temporal logic falsification of hybrid systems. In: Proceedings of IECON 2010: The 36th Annual Conference on IEEE Industrial Electronics Society, pp. 91–96 (2010)Google Scholar
- 10.Annpureddy, Y., Liu, C., Fainekos, G., Sankaranarayanan, S.: S-TaLiRo: a tool for temporal logic falsification for hybrid systems. In: Abdulla, P.A., Leino, K.R.M. (eds.) TACAS 2011. LNCS, vol. 6605, pp. 254–257. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19835-9_21 CrossRefGoogle Scholar
- 11.Asarin, E., Caspi, P., Maler, O.: Timed regular expressions. J. ACM 49(2), 172–206 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
- 12.Aydin-Gol, E., Bartocci, E., Belta, C.: A formal methods approach to pattern synthesis in reaction diffusion systems. In: Proceedings of CDC 2014: The 53rd IEEE Conference on Decision and Control, pp. 108–113. IEEE (2014)Google Scholar
- 13.Bartocci, E., Aydin-Gol, E., Haghighi, I., Belta, C.: A formal methods approach to pattern recognition and synthesis in reaction diffusion networks. IEEE Trans. Control Netw. Syst. PP(99), 1–12 (2016)CrossRefGoogle Scholar
- 14.Bartocci, E., Bonakdarpour, B., Falcone, Y.: First international competition on software for runtime verification. In: Bonakdarpour, B., Smolka, S.A. (eds.) RV 2014. LNCS, vol. 8734, pp. 1–9. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11164-3_1 Google Scholar
- 15.Bartocci, E., Bortolussi, L., Loreti, M., Nenzi, L.: Monitoring mobile and spatially distributed cyber-physical systems. In: Proceedings of MEMOCODE 2017: The 15th ACM-IEEE International Conference on Formal Methods and Models for System Design, pp. 146–155. ACM (2017)Google Scholar
- 16.Bartocci, E., Bortolussi, L., Milios, D., Nenzi, L., Sanguinetti, G.: Studying emergent behaviours in morphogenesis using signal spatio-temporal logic. In: Abate, A., Šafránek, D. (eds.) HSB 2015. LNCS, vol. 9271, pp. 156–172. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-26916-0_9 CrossRefGoogle Scholar
- 17.Bartocci, E., Bortolussi, L., Nenzi, L.: A temporal logic approach to modular design of synthetic biological circuits. In: Gupta, A., Henzinger, T.A. (eds.) CMSB 2013. LNCS, vol. 8130, pp. 164–177. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40708-6_13 CrossRefGoogle Scholar
- 18.Bartocci, E., Bortolussi, L., Nenzi, L., Sanguinetti, G.: System design of stochastic models using robustness of temporal properties. Theor. Comput. Sci. 587, 3–25 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
- 19.Bartocci, E., Bortolussi, L., Sanguinetti, G.: Data-driven statistical learning of temporal logic properties. In: Legay, A., Bozga, M. (eds.) FORMATS 2014. LNCS, vol. 8711, pp. 23–37. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10512-3_3 Google Scholar
- 20.Bartocci, E., Corradini, F., Berardini, M.R.D., Entcheva, E., Smolka, S.A., Grosu, R.: Modeling and simulation of cardiac tissue using hybrid I/O automata. Theor. Comput. Sci. 410(33–34), 3149–3165 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
- 21.Bartocci, E., Corradini, F., Merelli, E., Tesei, L.: Model checking biological oscillators. Electr. Notes Theor. Comput. Sci. 229(1), 41–58 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
- 22.Bartocci, E., Corradini, F., Merelli, E., Tesei, L.: Detecting synchronisation of biological oscillators by model checking. Theor. Comput. Sci. 411(20), 1999–2018 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
- 23.Bartocci, E., Falcone, Y., Bonakdarpour, B., Colombo, C., Decker, N., Havelund, K., Joshi, Y., Klaedtke, F., Milewicz, R., Reger, G., Rosu, G., Signoles, J., Thoma, D., Zalinescu, E., Zhang, Y.: First international competition on runtime verification: rules, benchmarks, tools, and final results of CRV 2014. Int. J. Softw. Tools Technol. Transf., 1–40, April 2017Google Scholar
- 24.Bartocci, E., Grosu, R., Karmarkar, A., Smolka, S.A., Stoller, S.D., Zadok, E., Seyster, J.: Adaptive runtime verification. In: Qadeer, S., Tasiran, S. (eds.) RV 2012. LNCS, vol. 7687, pp. 168–182. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-35632-2_18 CrossRefGoogle Scholar
- 25.Bartocci, E., Liò, P.: Computational modeling, formal analysis, and tools for systems biology. PLoS Comput. Biol. 12(1), 1–22 (2016)CrossRefGoogle Scholar
- 26.Basin, D., Caronni, G., Ereth, S., Harvan, M., Klaedtke, F., Mantel, H.: Scalable offline monitoring. In: Bonakdarpour, B., Smolka, S.A. (eds.) RV 2014. LNCS, vol. 8734, pp. 31–47. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11164-3_4 Google Scholar
- 27.Basin, D., Harvan, M., Klaedtke, F., Zălinescu, E.: MONPOLY: monitoring usage-control policies. In: Khurshid, S., Sen, K. (eds.) RV 2011. LNCS, vol. 7186, pp. 360–364. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29860-8_27 CrossRefGoogle Scholar
- 28.Bauer, A., Küster, J.-C., Vegliach, G.: From propositional to first-order monitoring. In: Legay, A., Bensalem, S. (eds.) RV 2013. LNCS, vol. 8174, pp. 59–75. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40787-1_4 CrossRefGoogle Scholar
- 29.Bauer, A., Leucker, M., Schallhart, C.: Monitoring of real-time properties. In: Arun-Kumar, S., Garg, N. (eds.) FSTTCS 2006. LNCS, vol. 4337, pp. 260–272. Springer, Heidelberg (2006). https://doi.org/10.1007/11944836_25 CrossRefGoogle Scholar
- 30.Bauer, A., Leucker, M., Schallhart, C.: Comparing LTL semantics for runtime verification. J. Logic Comput. 20(3), 651–674 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
- 31.Bortolussi, L., Milios, D., Sanguinetti, G.: U-check: model checking and parameter synthesis under uncertainty. In: Campos, J., Haverkort, B.R. (eds.) QEST 2015. LNCS, vol. 9259, pp. 89–104. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22264-6_6 CrossRefGoogle Scholar
- 32.Brim, L., Dluhos, P., Safránek, D., Vejpustek, T.: STL\({}^{*}\): Extending signal temporal logic with signal-value freezing operator. Inf. Comput. 236, 52–67 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
- 33.Brim, L., Vejpustek, T., Safránek, D., Fabriková, J.: Robustness analysis for value-freezing signal temporal logic. In: Proceedings of HSB 2013: The Second International Workshop on Hybrid Systems and Biology. EPTCS, vol. 125, pp. 20–36 (2013)Google Scholar
- 34.Bufo, S., Bartocci, E., Sanguinetti, G., Borelli, M., Lucangelo, U., Bortolussi, L.: Temporal logic based monitoring of assisted ventilation in intensive care patients. In: Margaria, T., Steffen, B. (eds.) ISoLA 2014. LNCS, vol. 8803, pp. 391–403. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45231-8_30 Google Scholar
- 35.Cameron, F., Wilson, D.M., Buckingham, B.A., Arzumanyan, H., Clinton, P., Chase, H.P., Lum, J., Maahs, D.M., Calhoun, P.M., Bequette, B.W.: Inpatient studies of a Kalman-filter-based predictive pump shutoff algorithm. J. Diabetes Sci. Technol. 6(5), 1142–1147 (2012)CrossRefGoogle Scholar
- 36.Cameron, F., Fainekos, G., Maahs, D.M., Sankaranarayanan, S.: Towards a verified artificial pancreas: challenges and solutions for runtime verification. In: Bartocci, E., Majumdar, R. (eds.) RV 2015. LNCS, vol. 9333, pp. 3–17. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23820-3_1 CrossRefGoogle Scholar
- 37.Chakarov, A., Sankaranarayanan, S., Fainekos, G.: Combining time and frequency domain specifications for periodic signals. In: Khurshid, S., Sen, K. (eds.) RV 2011. LNCS, vol. 7186, pp. 294–309. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29860-8_22 CrossRefGoogle Scholar
- 38.Cobelli, C., Man, C.D., Sparacino, G., Magni, L., Nicolao, G.D., Kovatchev, B.P.: Diabetes: Models, signals and control (methodological review). IEEE Rev. Biomed. Eng. 2, 54–95 (2009)CrossRefGoogle Scholar
- 39.D’Angelo, B., Sankaranarayanan, S., Sanchez, C., Robinson, W., Finkbeiner, B., Sipma, H., Mehrotra, S., Manna, Z.: LOLA: runtime monitoring of synchronous systems. In: Proceedings of TIME 2005: The 12th International Symposium on Temporal Representation and Reasoning, pp. 166–174. IEEE (2005)Google Scholar
- 40.Deshmukh, J.V., Donzé, A., Ghosh, S., Jin, X., Juniwal, G., Seshia, S.A.: Robust online monitoring of signal temporal logic. In: Bartocci, E., Majumdar, R. (eds.) RV 2015. LNCS, vol. 9333, pp. 55–70. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23820-3_4 CrossRefGoogle Scholar
- 41.Deshmukh, J.V., Donzé, A., Ghosh, S., Jin, X., Garvit, J., Seshia, S.A.: Robust online monitoring of signal temporal logic. Formal Methods Syst. Des. 51(1), 5–30 (2017)CrossRefzbMATHGoogle Scholar
- 42.Deshmukh, J.V., Majumdar, R., Prabhu, V.S.: Quantifying conformance using the Skorokhod metric. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9207, pp. 234–250. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21668-3_14 CrossRefGoogle Scholar
- 43.Dokhanchi, A., Hoxha, B., Fainekos, G.: On-line monitoring for temporal logic robustness. In: Bonakdarpour, B., Smolka, S.A. (eds.) RV 2014. LNCS, vol. 8734, pp. 231–246. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11164-3_19 Google Scholar
- 44.Dokhanchi, A., Hoxha, B., Fainekos, G.E.: Metric interval temporal logic specification elicitation and debugging. In: Proceedings of MEMOCODE 2015: The 13th ACM/IEEE International Conference on Formal Methods and Models for Codesign, pp. 70–79. IEEE (2015)Google Scholar
- 45.Dokhanchi, A., Zutshi, A., Sriniva, R.T., Sankaranarayanan, S., Fainekos, G.: Requirements driven falsification with coverage metrics. In: Proceedings of EMSOFT: The 12th International Conference on Embedded Software, pp. 31–40. IEEE (2015)Google Scholar
- 46.Donzé, A.: Breach, a toolbox for verification and parameter synthesis of hybrid systems. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 167–170. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14295-6_17 CrossRefGoogle Scholar
- 47.Donzé, A., Clermont, G., Legay, A., Langmead, C.J.: Parameter synthesis in nonlinear dynamical systems: application to systems biology. In: Batzoglou, S. (ed.) RECOMB 2009. LNCS, vol. 5541, pp. 155–169. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02008-7_11 CrossRefGoogle Scholar
- 48.Donzé, A., Fanchon, E., Gattepaille, L.M., Maler, O., Tracqui, P.: Robustness analysis and behavior discrimination in enzymatic reaction networks. PLoS ONE 6(9), e24246 (2011)Google Scholar
- 49.Donzé, A., Ferrère, T., Maler, O.: Efficient robust monitoring for STL. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 264–279. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8_19 CrossRefGoogle Scholar
- 50.Donzé, A., Krogh, B., Rajhans, A.: Parameter synthesis for hybrid systems with an application to simulink models. In: Majumdar, R., Tabuada, P. (eds.) HSCC 2009. LNCS, vol. 5469, pp. 165–179. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00602-9_12 CrossRefGoogle Scholar
- 51.Donzé, A., Maler, O.: Robust satisfaction of temporal logic over real-valued signals. In: Chatterjee, K., Henzinger, T.A. (eds.) FORMATS 2010. LNCS, vol. 6246, pp. 92–106. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15297-9_9 CrossRefGoogle Scholar
- 52.Donzé, A., Maler, O., Bartocci, E., Nickovic, D., Grosu, R., Smolka, S.: On temporal logic and signal processing. In: Chakraborty, S., Mukund, M. (eds.) ATVA 2012. LNCS, pp. 92–106. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33386-6_9 CrossRefGoogle Scholar
- 53.Dreossi, T., Dang, T., Donzé, A., Kapinski, J., Jin, X., Deshmukh, J.V.: Efficient guiding strategies for testing of temporal properties of hybrid systems. In: Havelund, K., Holzmann, G., Joshi, R. (eds.) NFM 2015. LNCS, vol. 9058, pp. 127–142. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-17524-9_10 Google Scholar
- 54.Drusinsky, D.: Monitoring temporal rules combined with time series. In: Hunt, W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 114–117. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45069-6_11 CrossRefGoogle Scholar
- 55.Eisner, C., Fisman, D.: A Practical Introduction to PSL. Springer, Heidelberg (2006). https://doi.org/10.1007/978-0-387-36123-9 Google Scholar
- 56.Eisner, C., Fisman, D., Havlicek, J.: A topological characterization of weakness. In: Proceedings of PODC 2005: The 24th Annual ACM Symposium on Principles of Distributed Computing, pp. 1–8. ACM (2005)Google Scholar
- 57.Eisner, C., Fisman, D., Havlicek, J., Lustig, Y., McIsaac, A., Van Campenhout, D.: Reasoning with temporal logic on truncated paths. In: Hunt, W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 27–39. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45069-6_3 CrossRefGoogle Scholar
- 58.Fainekos, G.E., Giannakoglou, K.C.: Inverse design of airfoils based on a novel formulation of the ant colony optimization method. Inverse Prob. Eng. 11(1), 21–38 (2003)CrossRefGoogle Scholar
- 59.Fainekos, G.E., Girard, A., Pappas, G.J.: Temporal logic verification using simulation. In: Asarin, E., Bouyer, P. (eds.) FORMATS 2006. LNCS, vol. 4202, pp. 171–186. Springer, Heidelberg (2006). https://doi.org/10.1007/11867340_13 CrossRefGoogle Scholar
- 60.Fainekos, G.E., Pappas, G.J.: Robustness of temporal logic specifications. In: Havelund, K., Núñez, M., Roşu, G., Wolff, B. (eds.) FATES/RV 2006. LNCS, vol. 4262, pp. 178–192. Springer, Heidelberg (2006). https://doi.org/10.1007/11940197_12 CrossRefGoogle Scholar
- 61.Fainekos, G.E., Pappas, G.J.: Robustness of temporal logic specifications for continuous-time signals. Theor. Comput. Sci. 410(42), 4262–4291 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
- 62.Fainekos, G.E., Sankaranarayanan, S., Ueda, K., Yazarel, H.: Verification of automotive control applications using S-TaLiRo. In: Proceedings of ACC 2012: The 2012 American Control Conference, pp. 3567–3572. IEEE (2012)Google Scholar
- 63.Falcone, Y., Ničković, D., Reger, G., Thoma, D.: Second international competition on runtime verification. In: Bartocci, E., Majumdar, R. (eds.) RV 2015. LNCS, vol. 9333, pp. 405–422. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23820-3_27 CrossRefGoogle Scholar
- 64.Ferrère, T.: Assertions and measurements for mixed-signal simulation. Ph.D. thesis. Université Grenoble-Alpes, France (2016)Google Scholar
- 65.Ferrère, T., Maler, O., Ničković, D., Ulus, D.: Measuring with timed patterns. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9207, pp. 322–337. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21668-3_19 CrossRefGoogle Scholar
- 66.Finkbeiner, B., Sipma, H.B.: Checking finite traces using alternating automata. Formal Methods Syst. Des. 24(2), 101–127 (2004)CrossRefzbMATHGoogle Scholar
- 67.Grosu, R., Batt, G., Fenton, F.H., Glimm, J., Le Guernic, C., Smolka, S.A., Bartocci, E.: From cardiac cells to genetic regulatory networks. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 396–411. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1_31 CrossRefGoogle Scholar
- 68.Grosu, R., Smolka, S.A., Corradini, F., Wasilewska, A., Entcheva, E., Bartocci, E.: Learning and detecting emergent behavior in networks of cardiac myocytes. Commun. ACM 52(3), 97–105 (2009)CrossRefzbMATHGoogle Scholar
- 69.Haghighi, I., Jones, A., Kong, Z., Bartocci, E., Grosu, R., Belta, C.: SpaTeL: a novel spatial-temporal logic and its applications to networked systems. In: Proceedings of HSCC 2015: The 18th International Conference on Hybrid Systems: Computation and Control, pp. 189–198. IEEE (2015)Google Scholar
- 70.Havelund, K., Rosu, G.: Monitoring Java programs with Java pathexplorer. Electron. Not. Theoret. Comput. Sci. 55(2), 200–217 (2001)CrossRefGoogle Scholar
- 71.Ho, H.-M., Ouaknine, J., Worrell, J.: Online monitoring of metric temporal logic. In: Bonakdarpour, B., Smolka, S.A. (eds.) RV 2014. LNCS, vol. 8734, pp. 178–192. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11164-3_15 Google Scholar
- 72.Hovorka, R.: Continuous glucose monitoring and closed-loop systems. Diabet. Med. 23(1), 1–12 (2005)CrossRefGoogle Scholar
- 73.Hoxha, B., Bach, H., Abbas, H., Dokhanci, A., Kobayashi, Y., Fainekos, G.: Towards formal specification visualization for testing and monitoring of cyber-physical systems. In: International Workshop on Design and Implementation of Formal Tools and Systems, DIFTS 2014 (2014)Google Scholar
- 74.Hoxha, B., Dokhanchi, A., Fainekos, G.: Mining parametric temporal logic properties in model based design for cyber-physical systems. Int. J. Softw. Tools Technol. Transf. (2017). (in press)Google Scholar
- 75.Hoxha, B., Mavridis, N., Fainekos, G.E.: VISPEC: a graphical tool for elicitation of MTL requirements. In: Proceedings of IROS 2015: The 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3486–3492. IEEE (2015)Google Scholar
- 76.MathWorks, Inc.: Test generated code with SIL and PIL simulations, cf. https://www.mathworks.com/help/ecoder/examples/software-and-processor-in-the-loop-sil-and-pil-simulation.html
- 77.Jaksic, S., Bartocci, E., Grosu, R., Kloibhofer, R., Nguyen, T., Ničković, D.: From signal temporal logic to FPGA monitors. In: Proceedings of MEMOCODE 2015: The 13th ACM/IEEE International Conference on Formal Methods and Models for Codesign, pp. 218–227. IEEE (2015)Google Scholar
- 78.Jakšić, S., Bartocci, E., Grosu, R., Ničković, D.: Quantitative monitoring of STL with edit distance. In: Falcone, Y., Sánchez, C. (eds.) RV 2016. LNCS, vol. 10012, pp. 201–218. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46982-9_13 CrossRefGoogle Scholar
- 79.Jensen, J.C., Chang, D.H., Lee, E.A.: A model-based design methodology for cyber-physical systems. In: Proceedings of IEEE Workshop on Design, Modeling, and Evaluation of Cyber-Physical Systems (CyPhy), pp. 1666–1671. IEEE (2011)Google Scholar
- 80.Jiang, Z., Pajic, M., Alur, R., Mangharam, R.: Closed-loop verification of medical devices with model abstraction and refinement. Int. J. Softw. Tools Technol. Transfer 16(2), 191–213 (2014)CrossRefGoogle Scholar
- 81.Jiang, Z., Pajic, M., Moarref, S., Alur, R., Mangharam, R.: Modeling and verification of a dual chamber implantable pacemaker. In: Flanagan, C., König, B. (eds.) TACAS 2012. LNCS, vol. 7214, pp. 188–203. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28756-5_14 CrossRefGoogle Scholar
- 82.Juniwal, G., Donzé, A., Jensen, J.C., Seshia, S.A.: CPSGrader: synthesizing temporal logic testers for auto-grading an embedded systems laboratory. In: Proceedings of EMSOFT 2014: The 2014 International Conference on Embedded Software, pp. 24:1–24:10. IEEE (2014)Google Scholar
- 83.Kalajdzic, K., Bartocci, E., Smolka, S.A., Stoller, S.D., Grosu, R.: Runtime verification with particle filtering. In: Legay, A., Bensalem, S. (eds.) RV 2013. LNCS, vol. 8174, pp. 149–166. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40787-1_9 CrossRefGoogle Scholar
- 84.Kane, A.: Runtime monitoring for safety-critical embedded systems. Ph.D. thesis, Carnegie Mellon University, College of Engineering (2015)Google Scholar
- 85.Kapinski, J., Jin, X., Deshmukh, J., Donzé, A., Yamaguchi, T., Ito, H., Kaga, T., Kobuna, S., Seshia, S.: ST-Lib: a library for specifying and classifying model behaviors. In: SAE Technical Paper. SAE International (2016)Google Scholar
- 86.Kowalski, A.: Pathway to artificial pancreas revisited: moving downstream. Diabetes Care 38, 1036–1043 (2015)CrossRefGoogle Scholar
- 87.Koymans, R.: Specifying real-time properties with metric temporal logic. Real-Time Syst. 2(4), 255–299 (1990)CrossRefGoogle Scholar
- 88.Lee, E.A.: Cyber physical systems: design challenges. In: Proceedings of ISORC 2011: The 11th IEEE International Symposium on Object and Component-Oriented Real-Time Distributed Computing, pp. 363–369, May 2008Google Scholar
- 89.Lee, I., Kannan, S., Kim, M., Sokolsky, O., Viswanathan, M.: Runtime assurance based on formal specifications. In: Proceedings of PDPTA 1999: The International Conference on Parallel and Distributed Processing Techniques and Applications, pp. 279–287. CSREA Press (1999)Google Scholar
- 90.Lemire, D.: Streaming maximum-minimum filter using no more than three comparisons per element. Nord. J. Comput. 13(4), 328–339 (2006)MathSciNetzbMATHGoogle Scholar
- 91.Luo, Q., Zhang, Y., Lee, C., Jin, D., Meredith, P.O.N., Şerbănuţă, T.F., Roşu, G.: RV-Monitor: efficient parametric runtime verification with simultaneous properties. In: Bonakdarpour, B., Smolka, S.A. (eds.) RV 2014. LNCS, vol. 8734, pp. 285–300. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11164-3_24 Google Scholar
- 92.Maahs, D.M., Calhoun, P., Buckingham, B.A., et al.: A randomized trial of a home system to reduce nocturnal hypoglycemia in type 1 diabetes. Diabetes Care 37(7), 1885–1891 (2014)CrossRefGoogle Scholar
- 93.Majumdar, R., Prabhu, V.S.: Computing the Skorokhod distance between polygonal traces. In: Proceedings of HSCC 2015: The 18th International Conference on Hybrid Systems: Computation and Control, pp. 199–208. ACM (2015)Google Scholar
- 94.Majumdar, R., Prabhu, V.S.: Computing distances between reach flowpipes. In: Proceedings of HSCC 2016: The 19th International Conference on Hybrid Systems: Computation and Control, pp. 267–276. ACM (2016)Google Scholar
- 95.Maler, O.: Some thoughts on runtime verification. In: Falcone, Y., Sánchez, C. (eds.) RV 2016. LNCS, vol. 10012, pp. 3–14. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46982-9_1 CrossRefGoogle Scholar
- 96.Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals. In: Lakhnech, Y., Yovine, S. (eds.) FORMATS/FTRTFT 2004. LNCS, vol. 3253, pp. 152–166. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30206-3_12 CrossRefGoogle Scholar
- 97.Maler, O., Ničković, D.: Monitoring properties of analog and mixed-signal circuits. STTT 15(3), 247–268 (2013)CrossRefGoogle Scholar
- 98.Maler, O., Nickovic, D., Pnueli, A.: Checking temporal properties of discrete, timed and continuous behaviors. In: Avron, A., Dershowitz, N., Rabinovich, A. (eds.) Pillars of Computer Science. LNCS, vol. 4800, pp. 475–505. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78127-1_26 CrossRefGoogle Scholar
- 99.Man, C.D., Raimondo, D.M., Rizza, R.A., Cobelli, C.: GIM, simulation software of meal glucose-insulin model. J. Diabetes Sci. Tech. 1(3), 323–330 (2007)CrossRefGoogle Scholar
- 100.Mobilia, N., Donzé, A., Marc Moulis, J., Fanchon, E.: Producing a set of models for the iron homeostasis network. In: Proceedings of HSB 2013: The Second International Workshop on Hybrid Systems and Biology. EPTCS, vol. 125, pp. 92–98 (2013)Google Scholar
- 101.Nelder, J.A., Mead, R.: A simplex method for function minimization. Comput. J. 7, 308–313 (1965)MathSciNetCrossRefzbMATHGoogle Scholar
- 102.Nenzi, L., Bortolussi, L., Ciancia, V., Loreti, M., Massink, M.: Qualitative and quantitative monitoring of spatio-temporal properties. In: Bartocci, E., Majumdar, R. (eds.) RV 2015. LNCS, vol. 9333, pp. 21–37. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23820-3_2 CrossRefGoogle Scholar
- 103.Nghiem, T., Sankaranarayanan, S., Fainekos, G.E., Ivancic, F., Gupta, A., Pappas, G.J.: Monte-carlo techniques for falsification of temporal properties of non-linear hybrid systems. In: Proceedings of HSCC 2010: The 13th ACM International Conference on Hybrid Systems: Computation and Control, pp. 211–220. ACM (2010)Google Scholar
- 104.Nguyen, L., Kapinski, J., Jin, X., Deshmukh, J., Butts, K., Johnson, T.: Abnormal data classification using time-frequency temporal logic. In: Proceedings of HSCC 2017: The 20th ACM International Conference on Hybrid Systems: Computation and Control, pp. 237–242. ACM (2017)Google Scholar
- 105.Nguyen, T., Bartocci, E., Ničković, D., Grosu, R., Jaksic, S., Selyunin, K.: The HARMONIA project: hardware monitoring for automotive systems-of-systems. In: Margaria, T., Steffen, B. (eds.) ISoLA 2016. LNCS, vol. 9953, pp. 371–379. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47169-3_28 CrossRefGoogle Scholar
- 106.Nguyen, T., Ničković, D.: Assertion-based monitoring in practice – checking correctness of an automotive sensor interface. In: Lang, F., Flammini, F. (eds.) FMICS 2014. LNCS, vol. 8718, pp. 16–32. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10702-8_2 Google Scholar
- 107.Nickovic, D.: Checking timed and hybrid properties: theory and applications. Ph.D. thesis. Université Joseph Fourier, Grenoble, France (2008)Google Scholar
- 108.Nickovic, D., Maler, O.: AMT: a property-based monitoring tool for analog systems. In: Raskin, J.-F., Thiagarajan, P.S. (eds.) FORMATS 2007. LNCS, vol. 4763, pp. 304–319. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75454-1_22 CrossRefGoogle Scholar
- 109.Pajic, M., Mangharam, R., Sokolsky, O., Arney, D., Goldman, J., Lee, I.: Model-driven safety analysis of closed-loop medical systems. IEEE Trans. Ind. Inform. 10(1), 3–16 (2014)CrossRefGoogle Scholar
- 110.Pnueli, A.: The temporal logic of programs. In: Proceedings of the 18th Annual Symposium on Foundations of Computer Science, pp. 46–57. IEEE (1977)Google Scholar
- 111.Raman, V., Donzé, A., Sadigh, D., M. Murray, R., Seshia, S.A.: Reactive synthesis from signal temporal logic specifications. In: Proceedings of the HSCC 2015: The 18th International Conference on Hybrid Systems: Computation and Control, pp. 239–248. ACM (2015)Google Scholar
- 112.Reger, G., Hallé, S., Falcone, Y.: Third international competition on runtime verification. In: Falcone, Y., Sánchez, C. (eds.) RV 2016. LNCS, vol. 10012, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46982-9_3 CrossRefGoogle Scholar
- 113.Rizk, A., Batt, G., Fages, F., Soliman, S.: On a continuous degree of satisfaction of temporal logic formulae with applications to systems biology. In: Heiner, M., Uhrmacher, A.M. (eds.) CMSB 2008. LNCS (LNAI), vol. 5307, pp. 251–268. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88562-7_19 CrossRefGoogle Scholar
- 114.Rodionova, A., Bartocci, E., Ničković, D., Grosu, R.: Temporal logic as filtering. In: Proceedings of HSCC 2016: The 19th International Conference on Hybrid Systems: Computation and Control, pp. 11–20. ACM (2016)Google Scholar
- 115.Sankaranarayanan, S., Fainekos, G.: Falsification of temporal properties of hybrid systems using the cross-entropy method. In: Proceedings of HSCC 2012: The 15th ACM International Conference on Hybrid Systems: Computation and Control, pp. 125–134. ACM (2012)Google Scholar
- 116.Sankaranarayanan, S., Kumar, S.A., Cameron, F., Bequette, B.W., Fainekos, G.E., Maahs, D.M.: Model-based falsification of an artificial pancreas control system. SIGBED Rev. 14(2), 24–33 (2017)CrossRefGoogle Scholar
- 117.Sankaranarayanan, S., Miller, C., Raghunathan, R., Ravanbakhsh, H., Fainekos, G.E.: A model-based approach to synthesizing insulin infusion pump usage parameters for diabetic patients. In: Proceedings of the 50th Annual Allerton Conference on Communication, Control, and Computing, pp. 1610–1617. IEEE (2012)Google Scholar
- 118.Selyunin, K., Jaksic, S., Nguyen, T., Reidl, C., Hafner, U., Bartocci, E., Nickovic, D., Grosu, R.: Runtime monitoring with recovery of the SENT communication protocol. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 336–355. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63387-9_17 CrossRefGoogle Scholar
- 119.Selyunin, K., Nguyen, T., Bartocci, E., Grosu, R.: Applying runtime monitoring for automotive electronic development. In: Falcone, Y., Sánchez, C. (eds.) RV 2016. LNCS, vol. 10012, pp. 462–469. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46982-9_30 CrossRefGoogle Scholar
- 120.Short, M., Pont, M.J.: Hardware in the loop simulation of embedded automotive control system. In: Proceedings of 2005 IEEE Intelligent Transportation Systems, pp. 426–431. IEEE, September 2005Google Scholar
- 121.Steil, G.M.: Algorithms for a closed-loop artificial pancreas: the case for proportional-integral-derivative control. J. Diabetes Sci. Technol. 7, 1621–1631 (2013)CrossRefGoogle Scholar
- 122.Steil, G., Panteleon, A., Rebrin, K.: Closed-sloop insulin delivery - the path to physiological glucose control. Adv. Drug Deliv. Rev. 56(2), 125–144 (2004)CrossRefGoogle Scholar
- 123.Stoma, S., Donzé, A., Bertaux, F., Maler, O., Batt, G.: STL-based analysis of TRAIL-induced apoptosis challenges the notion of type I/type II cell line classification. PLoS Comput. Biol. 9(5), e1003056 (2013)CrossRefGoogle Scholar
- 124.Ulus, D., Ferrère, T., Asarin, E., Maler, O.: Timed pattern matching. In: Legay, A., Bozga, M. (eds.) FORMATS 2014. LNCS, vol. 8711, pp. 222–236. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10512-3_16 Google Scholar
- 125.Ulus, D., Ferrère, T., Asarin, E., Maler, O.: Online timed pattern matching using derivatives. In: Chechik, M., Raskin, J.-F. (eds.) TACAS 2016. LNCS, vol. 9636, pp. 736–751. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49674-9_47 CrossRefGoogle Scholar
- 126.Vijayaraghavan, S., Ramanathan, M.: A Practical Guide for SystemVerilog Assertions. Springer, New York (2006). https://doi.org/10.1007/b137011 Google Scholar
- 127.Watterson, C., Heffernan, D.: Runtime verification and monitoring of embedded systems. IET Softw. 1(5), 172–179 (2007)CrossRefGoogle Scholar
- 128.Weinzimer, S., Steil, G., Swan, K., Dziura, J., Kurtz, N., Tamborlane, W.: Fully automated closed-loop insulin delivery versus semiautomated hybrid control in pediatric patients with type 1 diabetes using an artificial pancreas. Diabetes Care 31, 934–939 (2008)CrossRefGoogle Scholar
- 129.Xiaoqing, J., Donzé, A., Deshmukh, J.V., Seshia, S.A.: Mining requirements from closed-loop control models. In: Proceedings of HSCC 2013: The ACM International Conference on Hybrid Systems: Computation and Control, pp. 43–52. ACM (2013)Google Scholar
- 130.Yaghoubi, S., Fainekos, G.: Hybrid approximate gradient and stochastic descent for falsification of nonlinear systems. In: Proceedings of ACC 2017: The 2017 American Control Conference, pp. 529–534. IEEE (2017)Google Scholar
- 131.Yamaguchi, T., Kaga, T., Donzé, A., Seshia, S.A.: Combining requirement mining, software model checking, and simulation-based verification for industrial automotive systems. In: Proceedings of FMCAD 2016: The 16th International Conference on Formal Methods in Computer-Aided Design, pp. 201–204 (2016)Google Scholar
- 132.Yang, H., Hoxha, B., Fainekos, G.: Querying parametric temporal logic properties on embedded systems. In: Nielsen, B., Weise, C. (eds.) ICTSS 2012. LNCS, vol. 7641, pp. 136–151. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34691-0_11 CrossRefGoogle Scholar