Advertisement

Specification-Based Monitoring of Cyber-Physical Systems: A Survey on Theory, Tools and Applications

  • Ezio Bartocci
  • Jyotirmoy Deshmukh
  • Alexandre Donzé
  • Georgios Fainekos
  • Oded Maler
  • Dejan Ničković
  • Sriram Sankaranarayanan
Chapter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10457)

Abstract

The term Cyber-Physical Systems (CPS) typically refers to engineered, physical and biological systems monitored and/or controlled by an embedded computational core. The behaviour of a CPS over time is generally characterised by the evolution of physical quantities, and discrete software and hardware states. In general, these can be mathematically modelled by the evolution of continuous state variables for the physical components interleaved with discrete events. Despite large effort and progress in the exhaustive verification of such hybrid systems, the complexity of CPS models limits formal verification of safety of their behaviour only to small instances. An alternative approach, closer to the practice of simulation and testing, is to monitor and to predict CPS behaviours at simulation-time or at runtime. In this chapter, we summarise the state-of-the-art techniques for qualitative and quantitative monitoring of CPS behaviours. We present an overview of some of the important applications and, finally, we describe the tools supporting CPS monitoring and compare their main features.

Notes

Acknowledgment

E. Bartocci and D. Ničković acknowledge the partial support of the EU ICT COST Action IC1402 on Runtime Verification beyond Monitoring (ARVI) and of the HARMONIA (845631) project, funded by a national Austrian grant from Austrian FFG under the program IKT der Zukunft. E. Bartocci acknowledges the partial support of the Austrian National Research Network S 11405-N23 (RiSE/SHiNE) of the Austrian Science Fund (FWF). G. Fainekos acknowledges the support of the NSF CAREER award 1350420.

References

  1. 1.
    Abbas, H., Fainekos, G.: Computing descent direction of MTL robustness for non-linear systems. In: Proceedings of ACC 2013: The 2013 American Control Conference, pp. 4405–4410 (2013)Google Scholar
  2. 2.
    Abbas, H., Fainekos, G.E., Sankaranarayanan, S., Ivancic, F., Gupta, A.: Probabilistic temporal logic falsification of cyber-physical systems. ACM Trans. Embed. Comput. Syst. 12(s2), 95:1–95:30 (2013)Google Scholar
  3. 3.
    Abbas, H., Hoxha, B., Fainekos, G., Ueda, K.: Robustness-guided temporal logic testing and verification for stochastic cyber-physical systems. In: Proceedings of the 4th Annual IEEE International Conference on Cyber Technology in Automation, Control and Intelligent, pp. 1–6. IEEE (2014)Google Scholar
  4. 4.
    Abbas, H., Mittelmann, H., Fainekos, G.E.: Formal property verification in a conformance testing framework. In: Proceedings of MEMOCODE 2014: The 12th ACM-IEEE International Conference on Formal Methods and Models for System Design, pp. 155–164. IEEE (2014)Google Scholar
  5. 5.
    Abbas, H., Rodionova, A., Bartocci, E., Smolka, S.A., Grosu, R.: Quantitative regular expressions for Arrhythmia detection algorithms. In: Feret, J., Koeppl, H. (eds.) CMSB 2017. LNCS, vol. 10545, pp. 23–39. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-67471-1_2 CrossRefGoogle Scholar
  6. 6.
    Abbas, H., Winn, A., Fainekos, G.E., Julius, A.A.: Functional gradient descent method for metric temporal logic specifications. In: Proceedings of ACC 2014: The American Control Conference, pp. 2312–2317. IEEE (2014)Google Scholar
  7. 7.
    Akazaki, T., Hasuo, I.: Time robustness in MTL and expressivity in hybrid system falsification. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9207, pp. 356–374. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-21668-3_21 CrossRefGoogle Scholar
  8. 8.
    Alur, R., Feder, T., Henzinger, T.A.: The benefits of relaxing punctuality. J. ACM 43(1), 116–146 (1996)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Annapureddy, Y.S.R., Fainekos, G.E.: Ant colonies for temporal logic falsification of hybrid systems. In: Proceedings of IECON 2010: The 36th Annual Conference on IEEE Industrial Electronics Society, pp. 91–96 (2010)Google Scholar
  10. 10.
    Annpureddy, Y., Liu, C., Fainekos, G., Sankaranarayanan, S.: S-TaLiRo: a tool for temporal logic falsification for hybrid systems. In: Abdulla, P.A., Leino, K.R.M. (eds.) TACAS 2011. LNCS, vol. 6605, pp. 254–257. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-19835-9_21 CrossRefGoogle Scholar
  11. 11.
    Asarin, E., Caspi, P., Maler, O.: Timed regular expressions. J. ACM 49(2), 172–206 (2002)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Aydin-Gol, E., Bartocci, E., Belta, C.: A formal methods approach to pattern synthesis in reaction diffusion systems. In: Proceedings of CDC 2014: The 53rd IEEE Conference on Decision and Control, pp. 108–113. IEEE (2014)Google Scholar
  13. 13.
    Bartocci, E., Aydin-Gol, E., Haghighi, I., Belta, C.: A formal methods approach to pattern recognition and synthesis in reaction diffusion networks. IEEE Trans. Control Netw. Syst. PP(99), 1–12 (2016)CrossRefGoogle Scholar
  14. 14.
    Bartocci, E., Bonakdarpour, B., Falcone, Y.: First international competition on software for runtime verification. In: Bonakdarpour, B., Smolka, S.A. (eds.) RV 2014. LNCS, vol. 8734, pp. 1–9. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-11164-3_1 Google Scholar
  15. 15.
    Bartocci, E., Bortolussi, L., Loreti, M., Nenzi, L.: Monitoring mobile and spatially distributed cyber-physical systems. In: Proceedings of MEMOCODE 2017: The 15th ACM-IEEE International Conference on Formal Methods and Models for System Design, pp. 146–155. ACM (2017)Google Scholar
  16. 16.
    Bartocci, E., Bortolussi, L., Milios, D., Nenzi, L., Sanguinetti, G.: Studying emergent behaviours in morphogenesis using signal spatio-temporal logic. In: Abate, A., Šafránek, D. (eds.) HSB 2015. LNCS, vol. 9271, pp. 156–172. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-26916-0_9 CrossRefGoogle Scholar
  17. 17.
    Bartocci, E., Bortolussi, L., Nenzi, L.: A temporal logic approach to modular design of synthetic biological circuits. In: Gupta, A., Henzinger, T.A. (eds.) CMSB 2013. LNCS, vol. 8130, pp. 164–177. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-40708-6_13 CrossRefGoogle Scholar
  18. 18.
    Bartocci, E., Bortolussi, L., Nenzi, L., Sanguinetti, G.: System design of stochastic models using robustness of temporal properties. Theor. Comput. Sci. 587, 3–25 (2015)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Bartocci, E., Bortolussi, L., Sanguinetti, G.: Data-driven statistical learning of temporal logic properties. In: Legay, A., Bozga, M. (eds.) FORMATS 2014. LNCS, vol. 8711, pp. 23–37. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-10512-3_3 Google Scholar
  20. 20.
    Bartocci, E., Corradini, F., Berardini, M.R.D., Entcheva, E., Smolka, S.A., Grosu, R.: Modeling and simulation of cardiac tissue using hybrid I/O automata. Theor. Comput. Sci. 410(33–34), 3149–3165 (2009)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Bartocci, E., Corradini, F., Merelli, E., Tesei, L.: Model checking biological oscillators. Electr. Notes Theor. Comput. Sci. 229(1), 41–58 (2009)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Bartocci, E., Corradini, F., Merelli, E., Tesei, L.: Detecting synchronisation of biological oscillators by model checking. Theor. Comput. Sci. 411(20), 1999–2018 (2010)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Bartocci, E., Falcone, Y., Bonakdarpour, B., Colombo, C., Decker, N., Havelund, K., Joshi, Y., Klaedtke, F., Milewicz, R., Reger, G., Rosu, G., Signoles, J., Thoma, D., Zalinescu, E., Zhang, Y.: First international competition on runtime verification: rules, benchmarks, tools, and final results of CRV 2014. Int. J. Softw. Tools Technol. Transf., 1–40, April 2017Google Scholar
  24. 24.
    Bartocci, E., Grosu, R., Karmarkar, A., Smolka, S.A., Stoller, S.D., Zadok, E., Seyster, J.: Adaptive runtime verification. In: Qadeer, S., Tasiran, S. (eds.) RV 2012. LNCS, vol. 7687, pp. 168–182. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-35632-2_18 CrossRefGoogle Scholar
  25. 25.
    Bartocci, E., Liò, P.: Computational modeling, formal analysis, and tools for systems biology. PLoS Comput. Biol. 12(1), 1–22 (2016)CrossRefGoogle Scholar
  26. 26.
    Basin, D., Caronni, G., Ereth, S., Harvan, M., Klaedtke, F., Mantel, H.: Scalable offline monitoring. In: Bonakdarpour, B., Smolka, S.A. (eds.) RV 2014. LNCS, vol. 8734, pp. 31–47. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-11164-3_4 Google Scholar
  27. 27.
    Basin, D., Harvan, M., Klaedtke, F., Zălinescu, E.: MONPOLY: monitoring usage-control policies. In: Khurshid, S., Sen, K. (eds.) RV 2011. LNCS, vol. 7186, pp. 360–364. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-29860-8_27 CrossRefGoogle Scholar
  28. 28.
    Bauer, A., Küster, J.-C., Vegliach, G.: From propositional to first-order monitoring. In: Legay, A., Bensalem, S. (eds.) RV 2013. LNCS, vol. 8174, pp. 59–75. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-40787-1_4 CrossRefGoogle Scholar
  29. 29.
    Bauer, A., Leucker, M., Schallhart, C.: Monitoring of real-time properties. In: Arun-Kumar, S., Garg, N. (eds.) FSTTCS 2006. LNCS, vol. 4337, pp. 260–272. Springer, Heidelberg (2006).  https://doi.org/10.1007/11944836_25 CrossRefGoogle Scholar
  30. 30.
    Bauer, A., Leucker, M., Schallhart, C.: Comparing LTL semantics for runtime verification. J. Logic Comput. 20(3), 651–674 (2010)MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Bortolussi, L., Milios, D., Sanguinetti, G.: U-check: model checking and parameter synthesis under uncertainty. In: Campos, J., Haverkort, B.R. (eds.) QEST 2015. LNCS, vol. 9259, pp. 89–104. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-22264-6_6 CrossRefGoogle Scholar
  32. 32.
    Brim, L., Dluhos, P., Safránek, D., Vejpustek, T.: STL\({}^{*}\): Extending signal temporal logic with signal-value freezing operator. Inf. Comput. 236, 52–67 (2014)MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Brim, L., Vejpustek, T., Safránek, D., Fabriková, J.: Robustness analysis for value-freezing signal temporal logic. In: Proceedings of HSB 2013: The Second International Workshop on Hybrid Systems and Biology. EPTCS, vol. 125, pp. 20–36 (2013)Google Scholar
  34. 34.
    Bufo, S., Bartocci, E., Sanguinetti, G., Borelli, M., Lucangelo, U., Bortolussi, L.: Temporal logic based monitoring of assisted ventilation in intensive care patients. In: Margaria, T., Steffen, B. (eds.) ISoLA 2014. LNCS, vol. 8803, pp. 391–403. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-45231-8_30 Google Scholar
  35. 35.
    Cameron, F., Wilson, D.M., Buckingham, B.A., Arzumanyan, H., Clinton, P., Chase, H.P., Lum, J., Maahs, D.M., Calhoun, P.M., Bequette, B.W.: Inpatient studies of a Kalman-filter-based predictive pump shutoff algorithm. J. Diabetes Sci. Technol. 6(5), 1142–1147 (2012)CrossRefGoogle Scholar
  36. 36.
    Cameron, F., Fainekos, G., Maahs, D.M., Sankaranarayanan, S.: Towards a verified artificial pancreas: challenges and solutions for runtime verification. In: Bartocci, E., Majumdar, R. (eds.) RV 2015. LNCS, vol. 9333, pp. 3–17. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-23820-3_1 CrossRefGoogle Scholar
  37. 37.
    Chakarov, A., Sankaranarayanan, S., Fainekos, G.: Combining time and frequency domain specifications for periodic signals. In: Khurshid, S., Sen, K. (eds.) RV 2011. LNCS, vol. 7186, pp. 294–309. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-29860-8_22 CrossRefGoogle Scholar
  38. 38.
    Cobelli, C., Man, C.D., Sparacino, G., Magni, L., Nicolao, G.D., Kovatchev, B.P.: Diabetes: Models, signals and control (methodological review). IEEE Rev. Biomed. Eng. 2, 54–95 (2009)CrossRefGoogle Scholar
  39. 39.
    D’Angelo, B., Sankaranarayanan, S., Sanchez, C., Robinson, W., Finkbeiner, B., Sipma, H., Mehrotra, S., Manna, Z.: LOLA: runtime monitoring of synchronous systems. In: Proceedings of TIME 2005: The 12th International Symposium on Temporal Representation and Reasoning, pp. 166–174. IEEE (2005)Google Scholar
  40. 40.
    Deshmukh, J.V., Donzé, A., Ghosh, S., Jin, X., Juniwal, G., Seshia, S.A.: Robust online monitoring of signal temporal logic. In: Bartocci, E., Majumdar, R. (eds.) RV 2015. LNCS, vol. 9333, pp. 55–70. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-23820-3_4 CrossRefGoogle Scholar
  41. 41.
    Deshmukh, J.V., Donzé, A., Ghosh, S., Jin, X., Garvit, J., Seshia, S.A.: Robust online monitoring of signal temporal logic. Formal Methods Syst. Des. 51(1), 5–30 (2017)CrossRefMATHGoogle Scholar
  42. 42.
    Deshmukh, J.V., Majumdar, R., Prabhu, V.S.: Quantifying conformance using the Skorokhod metric. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9207, pp. 234–250. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-21668-3_14 CrossRefGoogle Scholar
  43. 43.
    Dokhanchi, A., Hoxha, B., Fainekos, G.: On-line monitoring for temporal logic robustness. In: Bonakdarpour, B., Smolka, S.A. (eds.) RV 2014. LNCS, vol. 8734, pp. 231–246. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-11164-3_19 Google Scholar
  44. 44.
    Dokhanchi, A., Hoxha, B., Fainekos, G.E.: Metric interval temporal logic specification elicitation and debugging. In: Proceedings of MEMOCODE 2015: The 13th ACM/IEEE International Conference on Formal Methods and Models for Codesign, pp. 70–79. IEEE (2015)Google Scholar
  45. 45.
    Dokhanchi, A., Zutshi, A., Sriniva, R.T., Sankaranarayanan, S., Fainekos, G.: Requirements driven falsification with coverage metrics. In: Proceedings of EMSOFT: The 12th International Conference on Embedded Software, pp. 31–40. IEEE (2015)Google Scholar
  46. 46.
    Donzé, A.: Breach, a toolbox for verification and parameter synthesis of hybrid systems. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 167–170. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-14295-6_17 CrossRefGoogle Scholar
  47. 47.
    Donzé, A., Clermont, G., Legay, A., Langmead, C.J.: Parameter synthesis in nonlinear dynamical systems: application to systems biology. In: Batzoglou, S. (ed.) RECOMB 2009. LNCS, vol. 5541, pp. 155–169. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-02008-7_11 CrossRefGoogle Scholar
  48. 48.
    Donzé, A., Fanchon, E., Gattepaille, L.M., Maler, O., Tracqui, P.: Robustness analysis and behavior discrimination in enzymatic reaction networks. PLoS ONE 6(9), e24246 (2011)Google Scholar
  49. 49.
    Donzé, A., Ferrère, T., Maler, O.: Efficient robust monitoring for STL. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 264–279. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-39799-8_19 CrossRefGoogle Scholar
  50. 50.
    Donzé, A., Krogh, B., Rajhans, A.: Parameter synthesis for hybrid systems with an application to simulink models. In: Majumdar, R., Tabuada, P. (eds.) HSCC 2009. LNCS, vol. 5469, pp. 165–179. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-00602-9_12 CrossRefGoogle Scholar
  51. 51.
    Donzé, A., Maler, O.: Robust satisfaction of temporal logic over real-valued signals. In: Chatterjee, K., Henzinger, T.A. (eds.) FORMATS 2010. LNCS, vol. 6246, pp. 92–106. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-15297-9_9 CrossRefGoogle Scholar
  52. 52.
    Donzé, A., Maler, O., Bartocci, E., Nickovic, D., Grosu, R., Smolka, S.: On temporal logic and signal processing. In: Chakraborty, S., Mukund, M. (eds.) ATVA 2012. LNCS, pp. 92–106. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-33386-6_9 CrossRefGoogle Scholar
  53. 53.
    Dreossi, T., Dang, T., Donzé, A., Kapinski, J., Jin, X., Deshmukh, J.V.: Efficient guiding strategies for testing of temporal properties of hybrid systems. In: Havelund, K., Holzmann, G., Joshi, R. (eds.) NFM 2015. LNCS, vol. 9058, pp. 127–142. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-17524-9_10 Google Scholar
  54. 54.
    Drusinsky, D.: Monitoring temporal rules combined with time series. In: Hunt, W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 114–117. Springer, Heidelberg (2003).  https://doi.org/10.1007/978-3-540-45069-6_11 CrossRefGoogle Scholar
  55. 55.
    Eisner, C., Fisman, D.: A Practical Introduction to PSL. Springer, Heidelberg (2006).  https://doi.org/10.1007/978-0-387-36123-9 Google Scholar
  56. 56.
    Eisner, C., Fisman, D., Havlicek, J.: A topological characterization of weakness. In: Proceedings of PODC 2005: The 24th Annual ACM Symposium on Principles of Distributed Computing, pp. 1–8. ACM (2005)Google Scholar
  57. 57.
    Eisner, C., Fisman, D., Havlicek, J., Lustig, Y., McIsaac, A., Van Campenhout, D.: Reasoning with temporal logic on truncated paths. In: Hunt, W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 27–39. Springer, Heidelberg (2003).  https://doi.org/10.1007/978-3-540-45069-6_3 CrossRefGoogle Scholar
  58. 58.
    Fainekos, G.E., Giannakoglou, K.C.: Inverse design of airfoils based on a novel formulation of the ant colony optimization method. Inverse Prob. Eng. 11(1), 21–38 (2003)CrossRefGoogle Scholar
  59. 59.
    Fainekos, G.E., Girard, A., Pappas, G.J.: Temporal logic verification using simulation. In: Asarin, E., Bouyer, P. (eds.) FORMATS 2006. LNCS, vol. 4202, pp. 171–186. Springer, Heidelberg (2006).  https://doi.org/10.1007/11867340_13 CrossRefGoogle Scholar
  60. 60.
    Fainekos, G.E., Pappas, G.J.: Robustness of temporal logic specifications. In: Havelund, K., Núñez, M., Roşu, G., Wolff, B. (eds.) FATES/RV 2006. LNCS, vol. 4262, pp. 178–192. Springer, Heidelberg (2006).  https://doi.org/10.1007/11940197_12 CrossRefGoogle Scholar
  61. 61.
    Fainekos, G.E., Pappas, G.J.: Robustness of temporal logic specifications for continuous-time signals. Theor. Comput. Sci. 410(42), 4262–4291 (2009)MathSciNetCrossRefMATHGoogle Scholar
  62. 62.
    Fainekos, G.E., Sankaranarayanan, S., Ueda, K., Yazarel, H.: Verification of automotive control applications using S-TaLiRo. In: Proceedings of ACC 2012: The 2012 American Control Conference, pp. 3567–3572. IEEE (2012)Google Scholar
  63. 63.
    Falcone, Y., Ničković, D., Reger, G., Thoma, D.: Second international competition on runtime verification. In: Bartocci, E., Majumdar, R. (eds.) RV 2015. LNCS, vol. 9333, pp. 405–422. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-23820-3_27 CrossRefGoogle Scholar
  64. 64.
    Ferrère, T.: Assertions and measurements for mixed-signal simulation. Ph.D. thesis. Université Grenoble-Alpes, France (2016)Google Scholar
  65. 65.
    Ferrère, T., Maler, O., Ničković, D., Ulus, D.: Measuring with timed patterns. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9207, pp. 322–337. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-21668-3_19 CrossRefGoogle Scholar
  66. 66.
    Finkbeiner, B., Sipma, H.B.: Checking finite traces using alternating automata. Formal Methods Syst. Des. 24(2), 101–127 (2004)CrossRefMATHGoogle Scholar
  67. 67.
    Grosu, R., Batt, G., Fenton, F.H., Glimm, J., Le Guernic, C., Smolka, S.A., Bartocci, E.: From cardiac cells to genetic regulatory networks. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 396–411. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-22110-1_31 CrossRefGoogle Scholar
  68. 68.
    Grosu, R., Smolka, S.A., Corradini, F., Wasilewska, A., Entcheva, E., Bartocci, E.: Learning and detecting emergent behavior in networks of cardiac myocytes. Commun. ACM 52(3), 97–105 (2009)CrossRefMATHGoogle Scholar
  69. 69.
    Haghighi, I., Jones, A., Kong, Z., Bartocci, E., Grosu, R., Belta, C.: SpaTeL: a novel spatial-temporal logic and its applications to networked systems. In: Proceedings of HSCC 2015: The 18th International Conference on Hybrid Systems: Computation and Control, pp. 189–198. IEEE (2015)Google Scholar
  70. 70.
    Havelund, K., Rosu, G.: Monitoring Java programs with Java pathexplorer. Electron. Not. Theoret. Comput. Sci. 55(2), 200–217 (2001)CrossRefGoogle Scholar
  71. 71.
    Ho, H.-M., Ouaknine, J., Worrell, J.: Online monitoring of metric temporal logic. In: Bonakdarpour, B., Smolka, S.A. (eds.) RV 2014. LNCS, vol. 8734, pp. 178–192. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-11164-3_15 Google Scholar
  72. 72.
    Hovorka, R.: Continuous glucose monitoring and closed-loop systems. Diabet. Med. 23(1), 1–12 (2005)CrossRefGoogle Scholar
  73. 73.
    Hoxha, B., Bach, H., Abbas, H., Dokhanci, A., Kobayashi, Y., Fainekos, G.: Towards formal specification visualization for testing and monitoring of cyber-physical systems. In: International Workshop on Design and Implementation of Formal Tools and Systems, DIFTS 2014 (2014)Google Scholar
  74. 74.
    Hoxha, B., Dokhanchi, A., Fainekos, G.: Mining parametric temporal logic properties in model based design for cyber-physical systems. Int. J. Softw. Tools Technol. Transf. (2017). (in press)Google Scholar
  75. 75.
    Hoxha, B., Mavridis, N., Fainekos, G.E.: VISPEC: a graphical tool for elicitation of MTL requirements. In: Proceedings of IROS 2015: The 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3486–3492. IEEE (2015)Google Scholar
  76. 76.
  77. 77.
    Jaksic, S., Bartocci, E., Grosu, R., Kloibhofer, R., Nguyen, T., Ničković, D.: From signal temporal logic to FPGA monitors. In: Proceedings of MEMOCODE 2015: The 13th ACM/IEEE International Conference on Formal Methods and Models for Codesign, pp. 218–227. IEEE (2015)Google Scholar
  78. 78.
    Jakšić, S., Bartocci, E., Grosu, R., Ničković, D.: Quantitative monitoring of STL with edit distance. In: Falcone, Y., Sánchez, C. (eds.) RV 2016. LNCS, vol. 10012, pp. 201–218. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-46982-9_13 CrossRefGoogle Scholar
  79. 79.
    Jensen, J.C., Chang, D.H., Lee, E.A.: A model-based design methodology for cyber-physical systems. In: Proceedings of IEEE Workshop on Design, Modeling, and Evaluation of Cyber-Physical Systems (CyPhy), pp. 1666–1671. IEEE (2011)Google Scholar
  80. 80.
    Jiang, Z., Pajic, M., Alur, R., Mangharam, R.: Closed-loop verification of medical devices with model abstraction and refinement. Int. J. Softw. Tools Technol. Transfer 16(2), 191–213 (2014)CrossRefGoogle Scholar
  81. 81.
    Jiang, Z., Pajic, M., Moarref, S., Alur, R., Mangharam, R.: Modeling and verification of a dual chamber implantable pacemaker. In: Flanagan, C., König, B. (eds.) TACAS 2012. LNCS, vol. 7214, pp. 188–203. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-28756-5_14 CrossRefGoogle Scholar
  82. 82.
    Juniwal, G., Donzé, A., Jensen, J.C., Seshia, S.A.: CPSGrader: synthesizing temporal logic testers for auto-grading an embedded systems laboratory. In: Proceedings of EMSOFT 2014: The 2014 International Conference on Embedded Software, pp. 24:1–24:10. IEEE (2014)Google Scholar
  83. 83.
    Kalajdzic, K., Bartocci, E., Smolka, S.A., Stoller, S.D., Grosu, R.: Runtime verification with particle filtering. In: Legay, A., Bensalem, S. (eds.) RV 2013. LNCS, vol. 8174, pp. 149–166. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-40787-1_9 CrossRefGoogle Scholar
  84. 84.
    Kane, A.: Runtime monitoring for safety-critical embedded systems. Ph.D. thesis, Carnegie Mellon University, College of Engineering (2015)Google Scholar
  85. 85.
    Kapinski, J., Jin, X., Deshmukh, J., Donzé, A., Yamaguchi, T., Ito, H., Kaga, T., Kobuna, S., Seshia, S.: ST-Lib: a library for specifying and classifying model behaviors. In: SAE Technical Paper. SAE International (2016)Google Scholar
  86. 86.
    Kowalski, A.: Pathway to artificial pancreas revisited: moving downstream. Diabetes Care 38, 1036–1043 (2015)CrossRefGoogle Scholar
  87. 87.
    Koymans, R.: Specifying real-time properties with metric temporal logic. Real-Time Syst. 2(4), 255–299 (1990)CrossRefGoogle Scholar
  88. 88.
    Lee, E.A.: Cyber physical systems: design challenges. In: Proceedings of ISORC 2011: The 11th IEEE International Symposium on Object and Component-Oriented Real-Time Distributed Computing, pp. 363–369, May 2008Google Scholar
  89. 89.
    Lee, I., Kannan, S., Kim, M., Sokolsky, O., Viswanathan, M.: Runtime assurance based on formal specifications. In: Proceedings of PDPTA 1999: The International Conference on Parallel and Distributed Processing Techniques and Applications, pp. 279–287. CSREA Press (1999)Google Scholar
  90. 90.
    Lemire, D.: Streaming maximum-minimum filter using no more than three comparisons per element. Nord. J. Comput. 13(4), 328–339 (2006)MathSciNetMATHGoogle Scholar
  91. 91.
    Luo, Q., Zhang, Y., Lee, C., Jin, D., Meredith, P.O.N., Şerbănuţă, T.F., Roşu, G.: RV-Monitor: efficient parametric runtime verification with simultaneous properties. In: Bonakdarpour, B., Smolka, S.A. (eds.) RV 2014. LNCS, vol. 8734, pp. 285–300. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-11164-3_24 Google Scholar
  92. 92.
    Maahs, D.M., Calhoun, P., Buckingham, B.A., et al.: A randomized trial of a home system to reduce nocturnal hypoglycemia in type 1 diabetes. Diabetes Care 37(7), 1885–1891 (2014)CrossRefGoogle Scholar
  93. 93.
    Majumdar, R., Prabhu, V.S.: Computing the Skorokhod distance between polygonal traces. In: Proceedings of HSCC 2015: The 18th International Conference on Hybrid Systems: Computation and Control, pp. 199–208. ACM (2015)Google Scholar
  94. 94.
    Majumdar, R., Prabhu, V.S.: Computing distances between reach flowpipes. In: Proceedings of HSCC 2016: The 19th International Conference on Hybrid Systems: Computation and Control, pp. 267–276. ACM (2016)Google Scholar
  95. 95.
    Maler, O.: Some thoughts on runtime verification. In: Falcone, Y., Sánchez, C. (eds.) RV 2016. LNCS, vol. 10012, pp. 3–14. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-46982-9_1 CrossRefGoogle Scholar
  96. 96.
    Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals. In: Lakhnech, Y., Yovine, S. (eds.) FORMATS/FTRTFT 2004. LNCS, vol. 3253, pp. 152–166. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-30206-3_12 CrossRefGoogle Scholar
  97. 97.
    Maler, O., Ničković, D.: Monitoring properties of analog and mixed-signal circuits. STTT 15(3), 247–268 (2013)CrossRefGoogle Scholar
  98. 98.
    Maler, O., Nickovic, D., Pnueli, A.: Checking temporal properties of discrete, timed and continuous behaviors. In: Avron, A., Dershowitz, N., Rabinovich, A. (eds.) Pillars of Computer Science. LNCS, vol. 4800, pp. 475–505. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-78127-1_26 CrossRefGoogle Scholar
  99. 99.
    Man, C.D., Raimondo, D.M., Rizza, R.A., Cobelli, C.: GIM, simulation software of meal glucose-insulin model. J. Diabetes Sci. Tech. 1(3), 323–330 (2007)CrossRefGoogle Scholar
  100. 100.
    Mobilia, N., Donzé, A., Marc Moulis, J., Fanchon, E.: Producing a set of models for the iron homeostasis network. In: Proceedings of HSB 2013: The Second International Workshop on Hybrid Systems and Biology. EPTCS, vol. 125, pp. 92–98 (2013)Google Scholar
  101. 101.
    Nelder, J.A., Mead, R.: A simplex method for function minimization. Comput. J. 7, 308–313 (1965)MathSciNetCrossRefMATHGoogle Scholar
  102. 102.
    Nenzi, L., Bortolussi, L., Ciancia, V., Loreti, M., Massink, M.: Qualitative and quantitative monitoring of spatio-temporal properties. In: Bartocci, E., Majumdar, R. (eds.) RV 2015. LNCS, vol. 9333, pp. 21–37. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-23820-3_2 CrossRefGoogle Scholar
  103. 103.
    Nghiem, T., Sankaranarayanan, S., Fainekos, G.E., Ivancic, F., Gupta, A., Pappas, G.J.: Monte-carlo techniques for falsification of temporal properties of non-linear hybrid systems. In: Proceedings of HSCC 2010: The 13th ACM International Conference on Hybrid Systems: Computation and Control, pp. 211–220. ACM (2010)Google Scholar
  104. 104.
    Nguyen, L., Kapinski, J., Jin, X., Deshmukh, J., Butts, K., Johnson, T.: Abnormal data classification using time-frequency temporal logic. In: Proceedings of HSCC 2017: The 20th ACM International Conference on Hybrid Systems: Computation and Control, pp. 237–242. ACM (2017)Google Scholar
  105. 105.
    Nguyen, T., Bartocci, E., Ničković, D., Grosu, R., Jaksic, S., Selyunin, K.: The HARMONIA project: hardware monitoring for automotive systems-of-systems. In: Margaria, T., Steffen, B. (eds.) ISoLA 2016. LNCS, vol. 9953, pp. 371–379. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-47169-3_28 CrossRefGoogle Scholar
  106. 106.
    Nguyen, T., Ničković, D.: Assertion-based monitoring in practice – checking correctness of an automotive sensor interface. In: Lang, F., Flammini, F. (eds.) FMICS 2014. LNCS, vol. 8718, pp. 16–32. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-10702-8_2 Google Scholar
  107. 107.
    Nickovic, D.: Checking timed and hybrid properties: theory and applications. Ph.D. thesis. Université Joseph Fourier, Grenoble, France (2008)Google Scholar
  108. 108.
    Nickovic, D., Maler, O.: AMT: a property-based monitoring tool for analog systems. In: Raskin, J.-F., Thiagarajan, P.S. (eds.) FORMATS 2007. LNCS, vol. 4763, pp. 304–319. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-75454-1_22 CrossRefGoogle Scholar
  109. 109.
    Pajic, M., Mangharam, R., Sokolsky, O., Arney, D., Goldman, J., Lee, I.: Model-driven safety analysis of closed-loop medical systems. IEEE Trans. Ind. Inform. 10(1), 3–16 (2014)CrossRefGoogle Scholar
  110. 110.
    Pnueli, A.: The temporal logic of programs. In: Proceedings of the 18th Annual Symposium on Foundations of Computer Science, pp. 46–57. IEEE (1977)Google Scholar
  111. 111.
    Raman, V., Donzé, A., Sadigh, D., M. Murray, R., Seshia, S.A.: Reactive synthesis from signal temporal logic specifications. In: Proceedings of the HSCC 2015: The 18th International Conference on Hybrid Systems: Computation and Control, pp. 239–248. ACM (2015)Google Scholar
  112. 112.
    Reger, G., Hallé, S., Falcone, Y.: Third international competition on runtime verification. In: Falcone, Y., Sánchez, C. (eds.) RV 2016. LNCS, vol. 10012, pp. 21–37. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-46982-9_3 CrossRefGoogle Scholar
  113. 113.
    Rizk, A., Batt, G., Fages, F., Soliman, S.: On a continuous degree of satisfaction of temporal logic formulae with applications to systems biology. In: Heiner, M., Uhrmacher, A.M. (eds.) CMSB 2008. LNCS (LNAI), vol. 5307, pp. 251–268. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-88562-7_19 CrossRefGoogle Scholar
  114. 114.
    Rodionova, A., Bartocci, E., Ničković, D., Grosu, R.: Temporal logic as filtering. In: Proceedings of HSCC 2016: The 19th International Conference on Hybrid Systems: Computation and Control, pp. 11–20. ACM (2016)Google Scholar
  115. 115.
    Sankaranarayanan, S., Fainekos, G.: Falsification of temporal properties of hybrid systems using the cross-entropy method. In: Proceedings of HSCC 2012: The 15th ACM International Conference on Hybrid Systems: Computation and Control, pp. 125–134. ACM (2012)Google Scholar
  116. 116.
    Sankaranarayanan, S., Kumar, S.A., Cameron, F., Bequette, B.W., Fainekos, G.E., Maahs, D.M.: Model-based falsification of an artificial pancreas control system. SIGBED Rev. 14(2), 24–33 (2017)CrossRefGoogle Scholar
  117. 117.
    Sankaranarayanan, S., Miller, C., Raghunathan, R., Ravanbakhsh, H., Fainekos, G.E.: A model-based approach to synthesizing insulin infusion pump usage parameters for diabetic patients. In: Proceedings of the 50th Annual Allerton Conference on Communication, Control, and Computing, pp. 1610–1617. IEEE (2012)Google Scholar
  118. 118.
    Selyunin, K., Jaksic, S., Nguyen, T., Reidl, C., Hafner, U., Bartocci, E., Nickovic, D., Grosu, R.: Runtime monitoring with recovery of the SENT communication protocol. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 336–355. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-63387-9_17 CrossRefGoogle Scholar
  119. 119.
    Selyunin, K., Nguyen, T., Bartocci, E., Grosu, R.: Applying runtime monitoring for automotive electronic development. In: Falcone, Y., Sánchez, C. (eds.) RV 2016. LNCS, vol. 10012, pp. 462–469. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-46982-9_30 CrossRefGoogle Scholar
  120. 120.
    Short, M., Pont, M.J.: Hardware in the loop simulation of embedded automotive control system. In: Proceedings of 2005 IEEE Intelligent Transportation Systems, pp. 426–431. IEEE, September 2005Google Scholar
  121. 121.
    Steil, G.M.: Algorithms for a closed-loop artificial pancreas: the case for proportional-integral-derivative control. J. Diabetes Sci. Technol. 7, 1621–1631 (2013)CrossRefGoogle Scholar
  122. 122.
    Steil, G., Panteleon, A., Rebrin, K.: Closed-sloop insulin delivery - the path to physiological glucose control. Adv. Drug Deliv. Rev. 56(2), 125–144 (2004)CrossRefGoogle Scholar
  123. 123.
    Stoma, S., Donzé, A., Bertaux, F., Maler, O., Batt, G.: STL-based analysis of TRAIL-induced apoptosis challenges the notion of type I/type II cell line classification. PLoS Comput. Biol. 9(5), e1003056 (2013)CrossRefGoogle Scholar
  124. 124.
    Ulus, D., Ferrère, T., Asarin, E., Maler, O.: Timed pattern matching. In: Legay, A., Bozga, M. (eds.) FORMATS 2014. LNCS, vol. 8711, pp. 222–236. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-10512-3_16 Google Scholar
  125. 125.
    Ulus, D., Ferrère, T., Asarin, E., Maler, O.: Online timed pattern matching using derivatives. In: Chechik, M., Raskin, J.-F. (eds.) TACAS 2016. LNCS, vol. 9636, pp. 736–751. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-49674-9_47 CrossRefGoogle Scholar
  126. 126.
    Vijayaraghavan, S., Ramanathan, M.: A Practical Guide for SystemVerilog Assertions. Springer, New York (2006).  https://doi.org/10.1007/b137011 Google Scholar
  127. 127.
    Watterson, C., Heffernan, D.: Runtime verification and monitoring of embedded systems. IET Softw. 1(5), 172–179 (2007)CrossRefGoogle Scholar
  128. 128.
    Weinzimer, S., Steil, G., Swan, K., Dziura, J., Kurtz, N., Tamborlane, W.: Fully automated closed-loop insulin delivery versus semiautomated hybrid control in pediatric patients with type 1 diabetes using an artificial pancreas. Diabetes Care 31, 934–939 (2008)CrossRefGoogle Scholar
  129. 129.
    Xiaoqing, J., Donzé, A., Deshmukh, J.V., Seshia, S.A.: Mining requirements from closed-loop control models. In: Proceedings of HSCC 2013: The ACM International Conference on Hybrid Systems: Computation and Control, pp. 43–52. ACM (2013)Google Scholar
  130. 130.
    Yaghoubi, S., Fainekos, G.: Hybrid approximate gradient and stochastic descent for falsification of nonlinear systems. In: Proceedings of ACC 2017: The 2017 American Control Conference, pp. 529–534. IEEE (2017)Google Scholar
  131. 131.
    Yamaguchi, T., Kaga, T., Donzé, A., Seshia, S.A.: Combining requirement mining, software model checking, and simulation-based verification for industrial automotive systems. In: Proceedings of FMCAD 2016: The 16th International Conference on Formal Methods in Computer-Aided Design, pp. 201–204 (2016)Google Scholar
  132. 132.
    Yang, H., Hoxha, B., Fainekos, G.: Querying parametric temporal logic properties on embedded systems. In: Nielsen, B., Weise, C. (eds.) ICTSS 2012. LNCS, vol. 7641, pp. 136–151. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-34691-0_11 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Ezio Bartocci
    • 1
  • Jyotirmoy Deshmukh
    • 2
  • Alexandre Donzé
    • 3
  • Georgios Fainekos
    • 4
  • Oded Maler
    • 5
  • Dejan Ničković
    • 6
  • Sriram Sankaranarayanan
    • 7
  1. 1.Technische Universität WienViennaAustria
  2. 2.University of Southern CaliforniaLos AngelesUSA
  3. 3.University of California at BerkeleyBerkeleyUSA
  4. 4.Arizona State UniversityTempeUSA
  5. 5.VERIMAG, CNRS and University of Grenoble-Alpes (UGA)Saint Martin d’HèresFrance
  6. 6.AIT Austrian Institute of Technology GmbHViennaAustria
  7. 7.University of ColoradoBoulderUSA

Personalised recommendations