Advertisement

Securing Fuzzy Commitment Scheme Against Decodability Attack-Based Cross-Matching

  • Sonam Chauhan
  • Ajay Sharma
Conference paper
Part of the Lecture Notes on Data Engineering and Communications Technologies book series (LNDECT, volume 18)

Abstract

Although biometric-based identification and authentication schemes provide considerable advantages over the traditional password-based or token-based methods, yet there is a scope for improving the security of these schemes. While template protection scheme based on fuzzy commitment scheme secures the templates, it is important to consider cross-matching. It is feasible to cross-match the protected template using decodability attacks. In this paper, we present an approach to secure fuzzy commitment scheme against cross-matching-based decodability attack. The security is achieved at the cost of an additional secret matrix. This additional key of size n × n makes it impossible for the intruder to directly use decoding on the auxiliary data and ensure the unlinkability between the templates.

Keywords

Cross-matching Decodability attack Fuzzy commitment scheme 

References

  1. 1.
    A.K. Jain, K. Nandakumar, A. Nagar, Biometric template security. EURASIP Journal on Advances in Signal Process 113 (2008)Google Scholar
  2. 2.
    A.B.J. Teoh, D.C.L. Ngo, Cancellable biometrics featuring with tokenized random number. Pattern Recogn. Lett 26(10), 1454–1460 (2005)CrossRefGoogle Scholar
  3. 3.
    A.B.J. Teoh, A. Goh, D.C.L. Ngo, Random multispace quantization as an analytic mechanism for biohashing of biometric and random identity inputs. IEEE Trans. Pattern Anal. Mach. Intell. 28(12), 1892–1901 (2006)CrossRefGoogle Scholar
  4. 4.
    C.S. Chin, A.T.S. Jin, D.N.C. Ling, High security iris verification system based on random secret integration. Comput. Vis. Image Underst. 102(2), 169–177 (2006)CrossRefGoogle Scholar
  5. 5.
    T. Connie, A.B.J. Teoh, M. Goh, D.C.L. Ngo, Palmhashing: A novel approach for cancelable biometrics. Inf. Process. Lett. 93(1), 1–5 (2005)MathSciNetCrossRefGoogle Scholar
  6. 6.
    T.S. Ong, A.B.J. Teoh, S.E. Khor, T. Connie, Reliable template protection technique for biometric authentication. IEICE Electron. Express 5(8), 278–284 (2008)CrossRefGoogle Scholar
  7. 7.
    F. Farooq, R.M. Bolle, J. Tsai-Yang, N.K. Ratha, Anonymous and revocable fingerprint recognition, in IEEE Conference on Computer Vision and Pattern Recognition (CVPR ‘07), (2007), pp. 1–7Google Scholar
  8. 8.
    C. Lee, J. Kim, Cancelable fingerprint templates using minutiae-based bitstrings. J. Netw. Comput. Appl. 33(3), 236–246 (2010)MathSciNetCrossRefGoogle Scholar
  9. 9.
    N.K. Ratha, J.H. Connell, R.M. Bolle, Enhancing security and privacy in biometrics-based authentication systems. IBM Syst. J. 40(3), 614–634 (2001)CrossRefGoogle Scholar
  10. 10.
    N.K. Ratha, S. Chikkerur, J.H. Connell, R.M. Bolle, Generating cancelable fingerprint templates. IEEE Trans. Pattern Anal. Mach. Intell. 29(4), 561–572 (2007)CrossRefGoogle Scholar
  11. 11.
    E. Maiorana, P. Campisi, J. Fierrez, J. Ortega-Garcia, A. Neri, Cancelable templates for sequence-based biometrics with application to on-line signature recognition. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 40(3), 525–538 (2010)CrossRefGoogle Scholar
  12. 12.
    S. Chikkerur, N.K. Ratha, J.H. Connell, R.M. Bolle, Generating registration free cancelable fingerprint templates, in 2nd IEEE International Conference on Biometrics: Theory, Applications and Systems, (2008)Google Scholar
  13. 13.
    B. Yang, C. Busch, P. Bours, D. Gafurov, Robust minutiae hash for fingerprint template protection. Proc. SPIE 7541, Media Forensics and Security II, (2010)Google Scholar
  14. 14.
    J. Bringer, H. Chabanne, B. Kindarji, Anonymous identification with cancelable biometrics, in 6th Interanational Symposium on Image and Signal Processing and Analysis (ISPA ‘09), (2009)Google Scholar
  15. 15.
    J. Zuo, N.K. Ratha, J.H. Connell, Cancelable iris biometric, in 19th International Conference on Pattern Recognition (ICPR ‘08), (2008)Google Scholar
  16. 16.
    A. Juels, M. Wattenberg, A fuzzy commitment scheme, in 6th ACM Conference on Computer and Communications Security, (1999), pp. 28–36Google Scholar
  17. 17.
    F. Hao, R. Anderson, J. Daugman, Combining crypto with biometrics effectively. IEEE Trans. Comput. 55(9), 1081–1088 (2006)CrossRefGoogle Scholar
  18. 18.
    J. Bringer, H. Chabanne, G. Cohen, B. Kindarji, G. Z’emor, Optimal iris fuzzy sketches in First IEEE International Conference on Biometrics: Theory, Applications, and Systems (2007).  https://doi.org/10.1109/BTAS.2007.4401904
  19. 19.
    L. Zhang, Z. Sun, T. Tan, S. Hu, Robust biometric key extraction based on iris cryptosystem, in Advances in Biometrics. ICB 2009. LNCS 5558, ed. by M. Tistarelli, M. S. Nixon (Springer, Berlin/Heidelberg, 2009)Google Scholar
  20. 20.
    C. Rathgeb, A. Uhl, Systematic construction of iris-based fuzzy commitment scheme, in Advances in Biometrics. ICB 2009. LNCS 5558, ed. by M. Tistarelli, M. S. Nixon (Springer, Berlin/Heidelberg, 2009)CrossRefGoogle Scholar
  21. 21.
    S. Yang, I. Verbauwhede, Secure iris verification, in IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), (2007)Google Scholar
  22. 22.
    J. Bringer, H. Chabanne, G. Cohen, B. Kindarji, G. Z’emor, Theoretical and practical boundaries of binary secure sketches. IEEE Trans. Inf. Forensics Secur 3(4), 673–683 (2008)CrossRefGoogle Scholar
  23. 23.
    K. Simoens, P. Tuyls, B. Preneel, Privacy weaknesses in biometric sketches, in 2009 30th IEEE Symposium on Security and Privacy, (2009)Google Scholar
  24. 24.
    Y. Dodis, R. Ostrovsky, L. Reyzin, A. Smith, Fuzzy extractors: How to generate strong keys from biometrics and other noisy data. SIAM Journal on Computing 38(1), 97–139 (2008)Google Scholar
  25. 25.
    E.C. Chang, S. Roy, Robust extraction of secret bits from minutiae, in Advances in Biometrics, ICB 2007. LNCS 4642, ed. by S. W. Lee, S. Z. Li (Springer, Berlin/Heidelberg, 2007)Google Scholar
  26. 26.
    E.J.C. Kelkboom, B. Gokberk, T.A.M. Kevenaar, A.H.M. Akkermans, M. van der Veen, “3D face”: Biometric template protection for 3D face recognition, in Advances in Biometrics, ICB 2007. LNCS 4642, ed. by S. W. Lee, S. Z. Li (Springer, Berlin/Heidelberg, 2007)CrossRefGoogle Scholar
  27. 27.
    T.A.M. Kevenaar, G.J. Schrijen, M. Van der Veen, A.H.M. Akkermans, F. Zuo, Face recognition with renewable and privacy preserving binary templates, in Fourth IEEE Workshop on Automatic Identification Advanced Technologies, (2005)Google Scholar
  28. 28.
    P. Tuyls, A.H.M. Akkermans, T.A.M. Kevenaar, G.J. Schrijnen, A.M. Bazen, R.N.J. Veldhuis, in AVBPA 2005, LNCS 3546, ed. by T. Kanade, A. Jain, N. K. Ratha (Springer, Berlin/Heidelberg, 2005), pp. 436–446Google Scholar
  29. 29.
    J.P. Linnartz, P. Tuyls, New shielding functions to enhance privacy and prevent misuse of biometric templates, in 4th International Conference AVBPA 2003, LNCS, vol. 2688, ed. by J. Kittler, M. S. Nixon (Springer, Berlin/Heidelberg, 2003), pp. 393–402Google Scholar
  30. 30.
    F.M. Bui, K. Martin, H. Lu, K.N. Plataniotis, D. Hatzinakos, Fuzzy key binding strategies based on quantization index modulation (QIM) for biometric encryption (be) applications. IEEE Trans. Inf. Forensics Secur 5(1), 118–132 (2010)CrossRefGoogle Scholar
  31. 31.
    I.R. Buhan, J. Doumen, P. Hartel, T. Qiang, R.N.J. Veldhuis, Embedding renewable cryptographic keys into noisy data. Int. J. Inf. Secur. 9(3), 193–208 (2010)CrossRefGoogle Scholar
  32. 32.
    A. Juels, M. Sudan, A fuzzy vault scheme. Proceedings of the 2002 international symposium on information theory, (2002)Google Scholar
  33. 33.
    A. Kumar, A. Kumar, Development of a new cryptographic construct using Palmprint-based fuzzy vault. EURASIP J. Adv. Signal Process (Dec 2009)Google Scholar
  34. 34.
    Y.J. Lee, K.R. Park, S.J. Lee, K. Bae, J. Kim, A new method for generating an invariant iris private key based on the fuzzy vault system. IEEE Trans. Syst. Man Cybern. B Cybern. 38(5), 1302–1313 (2008)CrossRefGoogle Scholar
  35. 35.
    T.C. Clancy, N. Kiyavash, D.J. Lin, Secure smartcard-based fingerprint authentication. Proc. of 2003 ACM SIGMM Workshop Biometrics Methods and Application (WBMA), pp. 45–52, (2003)Google Scholar
  36. 36.
    A. Juels, M. Sudan, A fuzzy vault scheme. Des. Codes Crypt. 38(2), 237–257 (2006)MathSciNetCrossRefGoogle Scholar
  37. 37.
    T. Frassen, Z. Xuebing, C. Busch, Fuzzy vault for 3D face recognition systems, in International Conference on Intelligent Information Hiding and Multimedia Signal Processing (IIHMSP ‘08), (2008)Google Scholar
  38. 38.
    S. Lee, D. Moon, W.Y. Choi, Y. Chung, Analysis of tradeoffs among verification accuracy, memory consumption, and execution time in the GH-based fuzzy fingerprint vault, in International Conference on Security Technology (SecTech ‘08), (2008)Google Scholar
  39. 39.
    P. Li, X. Yang, K. Cao, P. Shi, J. Tian, Security-enhanced fuzzy fingerprint vault based on minutiae’s local ridge information, in Advances in Biometrics. ICB 2009. LNCS, 5558, ed. by M. Tistarelli, M. S. Nixon (Springer, Berlin/Heidelberg, 2009)CrossRefGoogle Scholar
  40. 40.
    K. Nandakumar, A.K. Jain, S. Pankanti, Fingerprint-based fuzzy vault: Implementation and performance. IEEE Trans. Inf. Forensics Secur 2(4), 744–757 (2007)CrossRefGoogle Scholar
  41. 41.
    S. Yang, I. Verbauwhede, Automatic secure fingerprint verification system based on fuzzy vault scheme, in IEEE International Conference on Acoustics, Speech, and Signal Processing, (2005)Google Scholar
  42. 42.
    U. Uludag, A.K. Jain, Securing fingerprint template: Fuzzy vault with helper data. Computer Vision and Pattern Recognition Workshop, 163 (2006)Google Scholar
  43. 43.
    Y. Dodis, L. Reyzin, A. Smith, Fuzzy extractors: How to generate strong secret keys from biometrics and other noisy data, in Advances in Cryptology – Eurocrypt 2004. LNCS, (2004), pp. 532–540Google Scholar
  44. 44.
    Q. Li, Y. Sutcu, N. Memon, Secure sketch for biometric template. Advances in Cryptology ASIACRYPT LNCS 4284, 99–113 (2006)Google Scholar
  45. 45.
    Y. Sutcu, Q. Li, N. Menon, Protecting biometric templates with sketch: Theory and practice. IEEE Trans. Inf. Forensics Secur 2(3), 503–512 (2007)CrossRefGoogle Scholar
  46. 46.
    J. Bringer, H. Chabanne, B. Kindarji, The best of both worlds: Applying secure sketches to cancelable biometrics, in Science of Computer Programming, (2008)zbMATHGoogle Scholar
  47. 47.
    Q. Li, M. Guo, E.-C. Chang, Fuzzy extractors for asymmetric biometric representation, in IEEE Workshop on Biometrics (In Association with CVPR), (2008)Google Scholar
  48. 48.
    A. Arakala, J. Jeffers, K.J. Horadam, Fuzzy extractors for minutiae-based fingerprint authentication, in International Conference on Biometrics, (2007), pp. 760–769Google Scholar
  49. 49.
    Y. Sutcu, Q. Li, N. Menon, Design and analysis of fuzzy extractors for faces, in Biometric Technology for Human Identification, Part of the SPIE International Defense and Security Symposium, (2009)Google Scholar
  50. 50.
    J. Bringer, H. Chabanne, B. Kindarji, The best of both worlds: Applying secure sketches to cancelable biometrics. Science of Computer Programming 74(1–2), 43–51 (2008)Google Scholar
  51. 51.
    E.J.C. Kelkboom, On the Performance of Helper Data Template Protection Scheme. PhD thesis, University of Twente, 2010Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Sonam Chauhan
    • 1
  • Ajay Sharma
    • 1
  1. 1.Department of Computer Science and EngineeringSRM University, Delhi-NCRSonipatIndia

Personalised recommendations