Skip to main content

Physical Parameterization in MRI

  • 467 Accesses

Part of the Lecture Notes in Electrical Engineering book series (LNEE,volume 489)

Abstract

Gradient recalled echo (GRE) sequences are nowadays routinely used in clinical applications of magnetic resonance imaging (MRI). Contrast of GRE images is determined by several different physical mechanisms, like proton density, T2 relaxation time, gradients of magnetic field, and spatial heterogeneities of spin-spin interaction. Although the combined effect of all these parameters is of great value for physicians, it is possible that their separate mapping may reveal new features, that are masked in traditional GRE images. Separate mapping of physical parameters, contributing to contrast of GRE images, is called the parameterization, and has not been entirely solved by now. The present publication reports on development of the necessary tools for the solution. Finally, results obtained on volunteers are presented.

Keywords

  • Gradient recalled echo (GRE)
  • Relaxation function
  • Least squares
  • Magnetic gradients

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-75605-9_3
  • Chapter length: 7 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   189.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-75605-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   249.99
Price excludes VAT (USA)
Hardcover Book
USD   249.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.

References

  1. Bloch, F.: Nuclear induction. Phys. Rev. 70(7–8), 460–474 (1946)

    CrossRef  Google Scholar 

  2. Bloembergen, N., Purcell, E.M., Pound, R.V.: Relaxation effects in nuclear magnetic resonance absorption. Phys. Rev. 73(7), 679–712 (1948)

    CrossRef  Google Scholar 

  3. Yablonskiy, D.A., Haacke, E.M.: Theory of NMR signal behavior in magnetically inhomogeneous tissues – the static dephasing regime. Magn. Reson. Med. 32(6), 749–763 (1994)

    CrossRef  Google Scholar 

  4. Sukstanskii, A.L., Yablonskiy, D.A.: Gaussian approximation in the theory of MR signal formation in the presence of structure-specific magnetic field inhomogeneities. J. Magn. Res. 163, 236–247 (2003)

    CrossRef  Google Scholar 

  5. Sukstanskii, A.L., Yablonskiy, D.A.: Gaussian approximation in the theory of MR signal formation in the presence of structure-specific magnetic field inhomogeneities. Effects of impermeable susceptibility inclusions. J. Magn. Res. 167, 56–67 (2004)

    CrossRef  Google Scholar 

  6. Kiselev, V.G.: Effect of magnetic field gradients induced by microvasculature on NMR measurements of molecular self-diffusion in biological tissues. J. Magn. Res. 170, 228–235 (2004)

    CrossRef  Google Scholar 

  7. Dickson, J.D., Ash, T.W.J., Williams, G.B., Sukstanskii, A.L., Ansorge, R.E., Yablonskiy, D.A.: Quantitative phenomenological model of the BOLD contrast mechanism. J. Magn. Res. 212, 17–25 (2011)

    CrossRef  Google Scholar 

  8. Knight, M.J., Kauppinen, R.A.: Diffusion-mediated nuclear spin phase decoherence in cylindrically porous materials. J. Magn. Res. 269, 1–12 (2016)

    CrossRef  Google Scholar 

  9. Wharton, S., Bowtell, R.: Fiber orientation-dependent white matter contrast in gradient echo MRI. Proc. Natl. Acad. Sci. U.S.A. 109, 18559–18564 (2012). https://doi.org/10.1073/pnas.1211075109

    CrossRef  Google Scholar 

  10. Fernandez-Seara, M.A., Wehrli, F.W.: Postprocessing technique to correct for background gradients in image-based \( {\text{R}}_{2}^{*} \) measurements. Magn. Reson. Med. 44, 358–366 (2000)

    CrossRef  Google Scholar 

  11. Dahnke, H., Schaeffter, T.: Limits of detection of SPIO at 3.0T using \( \text{T}_{2}^{*} \) relaxometry. Magn. Reson. Med. 53, 1202–1206 (2005)

    CrossRef  Google Scholar 

  12. Protopopov, A.: Relaxation model and mapping of magnetic field gradients in MRI. Appl. Magn. Reson. 48, 255–274 (2017)

    CrossRef  Google Scholar 

  13. Protopopov, A.: Structural analysis of relaxation curves in MRI. Appl. Magn. Reson. 48, 1–12 (2017)

    CrossRef  Google Scholar 

  14. Valdés Hernández, M.C., Royle, N.A., Jackson, M.R., et al.: Color fusion of magnetic resonance images improves intracranial volume measurement in studies of aging. Open J. Radiol. 2, 1–9 (2012)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexey Protopopov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Protopopov, A. (2019). Physical Parameterization in MRI. In: Ntalianis, K., Croitoru, A. (eds) Applied Physics, System Science and Computers II. APSAC 2017. Lecture Notes in Electrical Engineering, vol 489. Springer, Cham. https://doi.org/10.1007/978-3-319-75605-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-75605-9_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-75604-2

  • Online ISBN: 978-3-319-75605-9

  • eBook Packages: EngineeringEngineering (R0)