Contemporary Approaches to Planar SOFC Stack Design and Performance Characterization

  • Yevgeniy Naumovich
  • Marcin Błesznowski
  • Agnieszka Żurawska
Chapter
Part of the Green Energy and Technology book series (GREEN)

Abstract

The present state of development of anode-supported solid oxide fuel cells may be considered sufficient for commercialization of the technology. However, fabrication of the SOFC stacks faces some issues related to materials science and efficiency of the transition from electrochemical performance of the single cell to performance of the whole stack. A patent-based overview of stack design demonstrated that evolution of industrial-grade SOFCs has moved on from sophisticated processes like enhanced chemical vapor deposition (ECVD) from Siemens Westinghouse to much more materially minded solutions, based on tape casting, screen-printing, milling and stamping of the steels, and sealing with glass- and mica-based composites. Noble metals and precise-fabricated ceramic parts are being replaced with steels, protected from oxidation by fine-tuned alloying and covered with functional layers which compensate for the weaknesses of this approach. This chapter focuses on the following key points: general design of recent stacks, high-temperature sealing, special Cr-alloyed ferritic steels for interconnects and structural elements, functional layers (chromium barriers and cathode contact helpers), and characterization procedures of whole stack performance. A propos the last point, this is considered mainly from the electric/electrochemical point of view and includes issues related to accelerated testing and monitoring in operandi. All these topics are absolutely crucial and require far greater involvement and analysis by experts in the particular fields. The main mission of this book meanwhile is to report on the current state of SOFC-based design in the context of the micro-CHP.

Keywords

Planar stack design Glass sealing Cathode contact materials Chromium barrier Performance tests 

References

  1. 1.
    Wachsman ED, Lee KT (2011) Lowering the temperature of solid oxide fuel cells. Science 334:935–939CrossRefGoogle Scholar
  2. 2.
    Sun C, Hui R, Roller J (2010) Cathode materials for solid oxide fuel cells: a review. J Solid State Electrochem 14:1125–1144CrossRefGoogle Scholar
  3. 3.
    Sun C, Stimming U (2007) Recent anode advances in solid oxide fuel cells. J Pow Sour 171:247–260CrossRefGoogle Scholar
  4. 4.
    Lee KT, Yoon SH, Wachsman ED (2012) The evolution of low temperature solid oxide fuel cells. J Mater Res 27:2065–2078Google Scholar
  5. 5.
    Kilner JA, Burriel M (2014) Materials for intermediate-temperature solid-oxide fuel cells. Annu Rev Mater Res 44:365–393CrossRefGoogle Scholar
  6. 6.
    SOFC http://www.sofc.com.cn/siglecell.html. Accessed 10 Jan 2018
  7. 7.
    Products | Elcogen (2017) http://www.elcogen.com/products/. Accessed 10 Jan 2018
  8. 8.
    Fiaxell SOFC TECHNOLOGIES—redox anode supported cell anode support thin electrolyte ASC ASE ESC resistant to redox cycles solid oxide fuel cell (2015) http://www.fiaxell.com/redox-anode-supported-thin-electrolyte-cell-asc-sofc-test-bench-rig-setup-button-cell-gold-platinum-mesh-gauze-micro-grid-crofer-22-nickel-h2-hydrogen-generator-generateur-hydrogene-pem-hydrolysis-steamer. Accessed 17 Jan 2018
  9. 9.
    James BD, DeSantis DA (2015) Manufacturing cost and installed price analysis of stationary fuel cell systems. Revision 3. Strategic Analysis Inc.Google Scholar
  10. 10.
    Brown M et al (2014) Interconnection of bundled solid oxide fuel cells. US Patent 8,628,891 B2Google Scholar
  11. 11.
    Haltiner KJ, Vordonis JS, O’Brien JF (2006) Solid oxide fuel cell stack having an integral gas distribution manifold. US Patent 7,771,884 B2Google Scholar
  12. 12.
    Mukerjee S (2010) Method of making a solid oxide fuel cell stack. US Patent 2011/0269059 A1Google Scholar
  13. 13.
    Edmonston D et al (2015) Fuel cell stack assembly and method of operating the same. US Patent 2016/0226093 A1Google Scholar
  14. 14.
    Ma Z et al (2008) Modular fuel cell stack assembly including anode gas oxidizer and integrated external manifolds for use in fuel cell stack modules. US Patent 8,962,210 B2Google Scholar
  15. 15.
    Kuznecov M, Eichler K, Otschik P (2003) Interconnector for high-temperature fuel cell unit. US Patent 7,625,658 B2Google Scholar
  16. 16.
    Reinert A (2007) Repeater unit for a fuel cell stack. US Patent 2010/0285383 A1Google Scholar
  17. 17.
    Reinert A (2009) Interconnector arrangement for a fuel cell stack. US Patent 9,112,191 B2Google Scholar
  18. 18.
    Choi SH et al (2012) Stack structure for fuel cell and composition thereof. Patent WO 2013/183885 A1Google Scholar
  19. 19.
    Noponen M, Himanen O, Pennanen J (2013) Procédé et agencement pour distribuer des réactifs dans une pile à combustible ou dans une cellule électrolytique. Patent WO 2015/097336 A1Google Scholar
  20. 20.
    Noponen M (2014) Assembly method and arrangement for a cell system. Patent WO 2015/118208 A1Google Scholar
  21. 21.
    Bone et al (2016) Fuel cell. Patent WO 2017/153751 A1Google Scholar
  22. 22.
    Daremas K, Zaehringer T (2005) Plant With High-Temperature Fuel Cells and a Multi-Component Sleeve for a Cell Stack. US Patent 2009/0286117 A1Google Scholar
  23. 23.
    Pedersen FC (2013) Soec stack with integrated heater. Patent WO 2014/139822 A1Google Scholar
  24. 24.
    Reytier M et al (2014) Method for high-temperature electrolysis or co-electrolysis, method for producing electricity by means of an sofc fuel cell, and associated interconnectors, reactors and operating methods. US Patent 2017/0279134 A1Google Scholar
  25. 25.
    Dekker NJJ, Janssen AHH (2008) Sofc stack with corrugated separator plate. European Patent 2338195 B1Google Scholar
  26. 26.
    Martinz H-P, Köck W, Sakaki T (1993) Ducropur, Ducrolloy—new chromium materials. Journal de Physique IV Colloque 03(C9) C9-205–C9-213Google Scholar
  27. 27.
    Schmidt H, Brükner B, Fischer K (1995) Interfacial functional layers between the metallic bipolar plate and the ceramic electrodes. In: Dokiya M, Yamamoto O, Tagawa H, Singhal SC (eds) The high temperature solid oxide fuel cells. Proceedings of 4th international symposium on solid oxide fuel cells, Yokohama, Japan, June 1995, The Electrochemical Society, pp 869–878Google Scholar
  28. 28.
    Hilpert K, Dos D, Miller M et al (1996) Chromium vapor species over solid oxide fuel cell interconnect materials and their potential for degradation processes. J Electorochem Soc 143:3642–3647CrossRefGoogle Scholar
  29. 29.
    Badwal SPS, Deller R, Foger K et al (1997) Interaction between chromia forming alloy interconnects and air electrode of solid oxide fuel cells. Solid State Ion 99:297–310CrossRefGoogle Scholar
  30. 30.
    Anderson HU (1992) Review of p-type doped perovskite materials for SOFC and other applications. Solid State lon 52:33–41CrossRefGoogle Scholar
  31. 31.
    Minh NQ (1993) Ceramic fuel-cell. J Am Ceram Soc 76:563–588CrossRefGoogle Scholar
  32. 32.
    Brandner M, Bienert C, Megel S et al (2013) Long term performance of stacks with chromium-based interconnects (CFY). ECS Trans 57:2235–2244CrossRefGoogle Scholar
  33. 33.
    Wu J, Liu X (2010) Recent development of SOFC metallic interconnect. J Mater Sci Technol 26:293–305CrossRefGoogle Scholar
  34. 34.
    HAYNES® 230® alloy (2017) Haynes InternationalGoogle Scholar
  35. 35.
    HAYNES® 242® alloy (2008) Haynes InternationalGoogle Scholar
  36. 36.
    Geng SJ, Zhu JH, Lu ZG (2006) Evaluation of Haynes 242 alloy as SOFC interconnect material. Solid State Ion 177:559–568CrossRefGoogle Scholar
  37. 37.
    Horita T, Yamaji K, Yokokawa H et al (2008) Effects of Si and Al concentrations in Fe–Cr alloy on the formation of oxide scales in H2–H2O. Int J Hydr Ener 33:6308–6315Google Scholar
  38. 38.
    Niewolak L, Young DJ, Hattendorf H et al (2014) Mechanisms of Oxide scale formation on ferritic interconnect steel in simulated low and high pO2 service environments of solid oxide fuel cells. Oxid Met 82:123–143CrossRefGoogle Scholar
  39. 39.
    Alnegren P, Sattari M, Froitzheim J, Svensson JE (2016) Degradation of ferritic stainless steels under conditions used for solid oxide fuel cells and electrolyzers at varying oxygen pressures. Corros Sci 110:200–212CrossRefGoogle Scholar
  40. 40.
    Chou YS, Stevenson JW, Singh P (2008) Effect of aluminizing of Cr-containing ferritic alloys on the seal strength of a novel high-temperature solid oxide fuel cell sealing glass. J Pow Sour 185:1001–1008CrossRefGoogle Scholar
  41. 41.
    VDM® Crofer 22 APU, Material Data Sheet No. 4046. VDM Metals GMBH, May 2010Google Scholar
  42. 42.
    VDM® Crofer 22 H, Material Data Sheet No. 4050, VDM Metals GMBH, June 2010Google Scholar
  43. 43.
    Werner A, Skilbred B, Haugsrud R (2012) Sandvik Sanergy HT—a potential interconnect material for LaNbO4-based proton ceramic fuel cells. J Pow Sour 206:70–76CrossRefGoogle Scholar
  44. 44.
    E-Brite, Technical Data Blue Sheet, Allegheny Ludlum, 2012Google Scholar
  45. 45.
    Alloy for SOFC Interconnects ZMGTM232G10 with improved oxidation resistance and electrical conductivity, Hitachi Metals, Ltd., 2017Google Scholar
  46. 46.
    Grolig JG, Froitzheim J, Svensson J-E (2015) Coated stainless steel 441 as interconnect material for solid oxide fuel cells: evolution of electrical properties. J Pow Sour 284:321–327CrossRefGoogle Scholar
  47. 47.
    Santacreu P-O, Girardon P, Zahid M et al (2011) On potential application of coated ferritic stainless steel grades K41X and K44Xin SOFC/HTE interconnects. ECS Trans 35:2481–2488CrossRefGoogle Scholar
  48. 48.
    Palcut M, Mikkelsen L, Neufeld K et al (2010) Corrosion stability of ferritic stainless steels for solid oxide electrolyser cell interconnects. Corros Sci 52:3309–3320CrossRefGoogle Scholar
  49. 49.
    Falk-Windisch H, Svensson JE, Froitzheim J (2015) The effect of temperature on chromium vaporization and oxide scale growth on interconnect steels for solid oxide fuel cells. J Pow Sour 287:25–35CrossRefGoogle Scholar
  50. 50.
    Geng S, Zhua J, Brady P et al (2007) A low-Cr metallic interconnect for intermediate-temperature solid oxide fuel cells. J Pow Sour 172:775–781CrossRefGoogle Scholar
  51. 51.
    Niewolak L, Wessel E, Singheiser L et al (2010) Potential suitability of ferritic and austenitic steels as interconnect materials for solid oxide fuel cells operating at 600 °C. J Pow Sour 195:7600–7608CrossRefGoogle Scholar
  52. 52.
    Ardigo MR, Popa I, Chevalier S et al (2012) Evaluation of a new Cr-free alloy as interconnect material for hydrogen production by high temperature water vapour electrolysis: study in cathode atmosphere. Int J Hydr Ener 37:8177–8184CrossRefGoogle Scholar
  53. 53.
    Essuman E, Meier GH, Żurek J et al (2008) The effect of water vapor on selective oxidation of Fe–Cr alloys. Oxid Met 69:143–162CrossRefGoogle Scholar
  54. 54.
    Young DJ, Żurek J, Singheiser L et al (2011) Temperature dependence of oxide scale formation on high-Cr ferritic steels in Ar–H2–H2O. Corros Sci 53:2131–2141CrossRefGoogle Scholar
  55. 55.
    Quadakker WJ, Greiner H, Hänsel M et al (1996) Compatibility of perovskite contact layers between cathode and metallic interconnector plates of SOFCs. Solid State lon 91:55–67CrossRefGoogle Scholar
  56. 56.
    Yang Z, Xia G-G, Maupin GD et al (2006) Evaluation of perovskite overlay coatings on ferritic stainless steels for SOFC interconnect applications. J Electrochem Soc 153:A1852–A1858CrossRefGoogle Scholar
  57. 57.
    Persson Å, Hendriksen PV, Mikkelsen L et al (2006) Effect of perovskite coating on oxide scale growth on Fe-22Cr. Defect Diffus Forum 258–260:372–377Google Scholar
  58. 58.
    Lacey R, Pramanick A, Lee JC et al (2010) Evaluation of Co and perovskite Cr-blocking thin films on SOFC interconnects. Solid State Ion 181:1294–1302CrossRefGoogle Scholar
  59. 59.
    Han W-K, Ju J-W, Hwang GH et al (2010) Synthesis and characterization of the Co-electrolessly deposited metallic interconnect for solid oxide fuel cell. Kor J Mater Res 20:356–363 (in Korean)CrossRefGoogle Scholar
  60. 60.
    Sandvik Sanergy HT 441—Sandvik materials technology. http://smt.sandvik.com/en/products/strip-steel/strip-products/coated-strip-steel/sandvik-sanergy-ht/. Accessed 11 Jan 2018
  61. 61.
    Demeneva N, Bredikhin S (2013) Improvement of oxidation resistance of Crofer 22 APU with modified surface for solid oxide fuel cell interconnects. ECS Trans 57:2195–2201CrossRefGoogle Scholar
  62. 62.
    Shong WJ, Liu CK, Wu SH et al (2014) Oxidation behavior of nickel coating on ferritic stainless steel interconnect for SOFC application. Int J Hydr Ener 39:197937–19746CrossRefGoogle Scholar
  63. 63.
    Larring Y, Norby T (2000) Spinel and perovskite functional layers between plansee metallic interconnect (Cr-5 wt % Fe-1 wt % Y2O3) and ceramic (La0.85Sr0.15)0.91MnO3 cathode materials for solid oxide fuel cells. J Electrochem Soc 147:3251–3256CrossRefGoogle Scholar
  64. 64.
    Qu W, Jian L, Hill JM et al (2006) Electrical and microstructural characterization of spinel phases as potential coatings for SOFC metallic interconnects. J Power Sources 153:114–124CrossRefGoogle Scholar
  65. 65.
    Chen X, Hou PY, Jacobson CP et al (2005) Protective coating on stainless steel interconnect for SOFCs: oxidation kinetics and electrical properties. Solid State Ion 176:425–433CrossRefGoogle Scholar
  66. 66.
    Roehrens D, Neumann A, Beez A at al (2016) Formation of chromium containing impurities in (La,Sr)MnO3 solid oxide fuel cell cathodes under stack operating conditions and its effect on performance. Ceram Int 42:9467–9474CrossRefGoogle Scholar
  67. 67.
    Liu Y, Fergus JW, De la Cruz C (2013) Electrical properties, cation distributions, and thermal expansion of manganese cobalt chromite spinel oxides. J Am Ceram Soc 96:1841–1846CrossRefGoogle Scholar
  68. 68.
    Shaigan N, Qu W, Ivey DG et al (2010) A review of recent progress in coatings, surface modifications and alloy developments for solid oxide fuel cell ferritic stainless steel interconnects. J Pow Sour 195:1529–1542CrossRefGoogle Scholar
  69. 69.
    Home—Nexceris (2018) http://nexceris.com/. Accessed 10 Jan 2018
  70. 70.
    Hanft D, Exner J, Schubert M (2015) An overview of the aerosol deposition method: process fundamentals and new trends in materials applications. J Ceram Sci Technol 6:147–182Google Scholar
  71. 71.
    Kidner NJ, Arkenberg G, Ibanez S et al (2013) Development of protective coatings for SOFC metallic components. ECS Trans 57:2349–2356CrossRefGoogle Scholar
  72. 72.
    Maintain Electrical Connectivity and Protect Metal Components (2018) http://nexceris.com/products-services/protective-coatings/electrical-connectivity-high-temperatures/. Accessed 10 Jan 2018
  73. 73.
    Yang Z, Xia G-G, Li X-H et al (2007) (Mn, Co)3O4 spinel coatings on ferritic stainless steels for SOFC interconnect applications. Int J Hydr Ener 32:3648–3654CrossRefGoogle Scholar
  74. 74.
    Magdefrau NJ, Chen L, Sun EY et al (2013) Formation of spinel reaction layers in manganese cobaltite coated Crofer 22 APU for solid oxide fuel cell interconnects. J Pow Sour 227:318–326CrossRefGoogle Scholar
  75. 75.
    Miguel-Pérez V, Martínez-Amesti V, Nó ML et al (2013) The effect of doping (Mn, B)3O4 materials as protective layers indifferent metallic interconnects for Solid Oxide Fuel Cells. J Pow Sour 243:419–430CrossRefGoogle Scholar
  76. 76.
    Montero X, Tietz F, Sebold D et al (2008) MnCo1.9Fe0.1O4 spinel protection layer on commercial ferritic steels for interconnect applications in solid oxide fuel cells. J Pow Sour 184:172–179CrossRefGoogle Scholar
  77. 77.
    Park BK, Lee JW, Lee SB et al (2013) Cu- and Ni-doped Mn1.5Co1.5O4 spinel coatings on metallic interconnects for solid oxide fuel cells. Int J Hydr Ener 38:12043–12050CrossRefGoogle Scholar
  78. 78.
    Hosseini SN, Karimzadeh F, Enayati MH et al (2016) Oxidation and electrical behavior of CuFe2O4 spinel coated Crofer 22 APU stainless steel for SOFC interconnect application. Solid State Ion 289:95–105CrossRefGoogle Scholar
  79. 79.
    Zhang W, Pu J, Chi B et al (2011) NiMn2O4 spinel as an alternative coating material for metallic interconnects of intermediate temperature solid oxide fuel cells. J Pow Sour 196:5591–5594CrossRefGoogle Scholar
  80. 80.
    Bi ZH, Zhu JH, Batey JL (2010) CoFe2O4 spinel protection coating thermally converted from the electroplated Co–Fe alloy for solid oxide fuel cell interconnect application. J Pow Sour 195:3605–3611CrossRefGoogle Scholar
  81. 81.
    Interconnect | Product (2015) http://www.kceracell.com/interconnect.html. Accessed 10 Jan 2018
  82. 82.
    Manganese Cobalt Oxide, Spinel Powder | AMERICAN ELEMENTS ® https://www.americanelements.com/manganese-cobalt-oxide-spinel-powder. Accessed 18 Jan 2018
  83. 83.
    Manganese cobalt spinel | Cerpotech http://www.cerpotech.com/products/manganese-cobalt-spinel. Accessed 10 Jan 2018
  84. 84.
    Petric A, Ling H (2007) Electrical conductivity and thermal expansion of spinels at elevated temperatures. J Am Ceram Soc 90:1515–1520CrossRefGoogle Scholar
  85. 85.
    Yang Z, Xia G, Simner SP et al (2005) Thermal growth and performance of manganese cobaltite spinel protection layers on ferritic stainless steel SOFC interconnects. J Electrochem Soc 152:A1896–A1901CrossRefGoogle Scholar
  86. 86.
    Tucker MC, Cheng L, DeJonghe LC (2011) Selection of cathode contact materials for solid oxide fuel cells. J Pow Sour 196:8313–8322CrossRefGoogle Scholar
  87. 87.
    Blum L (2017) An analysis of contact problems in solid oxide fuel cell stacks arising from differences in thermal expansion coefficients. Electrochim Acta 223:100–108CrossRefGoogle Scholar
  88. 88.
    Montero X, Tietz F, Stöver D et al (2009) Comparative study of perovskites as cathode contact materials between an La0.8Sr0.2FeO3 cathode and a Crofer 22 APU interconnect in solid oxide fuel cells. J Pow Sour 188:148–155CrossRefGoogle Scholar
  89. 89.
    Montero X, Fischer W, Tietz F et al (2009) Development and characterization of a quasi-ternary diagram based on La0.8Sr0.2(Co, Cu, Fe)O3 oxides in view of application as a cathode contact material for solid oxide fuel cells. Solid State Ion 180:731–737CrossRefGoogle Scholar
  90. 90.
    Naumovich EN, Zakharchuk K, Obrębowski S et al (2017) (La, Sr)(Fe, Co)O3-based cathode contact materials for intermediate-temperature solid oxide fuel cells. Int J Hydr Ener 42:29443–29453CrossRefGoogle Scholar
  91. 91.
    McCarthy BP, Pederson LR, Chou YS et al (2008) Low-temperature sintering of lanthanum strontium manganite-based contact pastes for SOFCs. J Pow Sour 180:294–300CrossRefGoogle Scholar
  92. 92.
    Konysheva E, Laatsch J, Wessel E et al (2006) Influence of different perovskite interlayers on the electrical conductivity between La0.65Sr0.3MnO3 and Fe/Cr-based steels. Solid State Ion 177:923–930CrossRefGoogle Scholar
  93. 93.
    Morán-Ruiz A, Vidal K, Larrañaga A et al (2013) Chemical Compatibility and Electrical Contact of LaNi0.6Co0.4O3–δ (LNC) between Crofer22APU Interconnect and La0.6Sr0.4FeO3 (LSF) Cathode for IT-SOFC. Fuel Cells 13:398–403CrossRefGoogle Scholar
  94. 94.
    Morán-Ruiz A, Vidal K, Larrañaga A et al (2016) Evaluation of using LaNi0.6Fe0.4O3–δ contact layer between La0.6Sr0.4FeO3 cathode and Crofer 22 APU interconnect for solid oxide fuel cells. Fuel Cells 16:330–339CrossRefGoogle Scholar
  95. 95.
    Tietz F, Schmidt A, Zahid M (2003) Investigation of the quasi-ternary system LaMnO3–LaCoO3–“LaCuO3”—I: the series La(Mn0.5Co0.5)1−xCuxO3-δ. J Solid State Chem 177:745–751CrossRefGoogle Scholar
  96. 96.
    Tietz F, Arul Raj I, Jungen W et al (2001) High-temperature superconductor materials for contact layers in solid oxide fuel cells: I. Sintering Behavior and physical properties at operating temperatures. Acta Mater 49:803–810CrossRefGoogle Scholar
  97. 97.
    Arul Raj I, Tietz F, Gupta A et al (2001) High-temperature superconductor materials for contact layers in solid oxide fuel cells: II. Chemical properties at operating temperatures. Acta Mater 49:1987–1992CrossRefGoogle Scholar
  98. 98.
    Lu Z, Xia G, Templeton JD et al (2011) Development of Ni1−xCoxO as the cathode/interconnect contact for solid oxide fuel cells. Electrochem Commun 13:642–645CrossRefGoogle Scholar
  99. 99.
    Haviar M, Pánek Z, Šajgalik P (1985) The use of electrical conductivity measurements to study sintering mechanisms. Ceram Int 11:13–16CrossRefGoogle Scholar
  100. 100.
    Tucker MC, Cheng L, DeJonghe LC (2011) Glass-containing composite cathode contact materials for solid oxide fuel cells. J Pow Sour 196:8435–8443CrossRefGoogle Scholar
  101. 101.
    Tucker MC, DeJonghe LC, García-Negrón V et al (2013) Mechanical and electrochemical performance of composite cathode contact materials for solid oxide fuel cells. J Pow Sour 239:315–320CrossRefGoogle Scholar
  102. 102.
    Morán-Ruiz A, Vidal K, Larrañaga A et al (2014) LaNi0.6Co0.4O3−δ dip-coated on Fe–Cr mesh as a composite cathode contact material on intermediate solid oxide fuel cells. J Pow Sour 269:509–519CrossRefGoogle Scholar
  103. 103.
    Morán-Ruiz A, Vidal K, Larrañaga A et al (2015) Evaluation of using protective/conductive coating on Fe-22Cr mesh as a composite cathode contact material for intermediate solid oxide fuel cells. Int J Hydr Ener 40:4804–4818CrossRefGoogle Scholar
  104. 104.
    Cathode | Product (2015) http://www.kceracell.com/cathode.html. Accessed 10 Jan 2018
  105. 105.
    SOFCMAN (2017) http://www.sofc.com.cn/powders.html. Accessed 10 Jan 2018
  106. 106.
    Tallgren J, Bianco M, Himanen O et al (2015) Evaluation of protective coatings for SOFC interconnects. ECS Trans 68:1597–1608CrossRefGoogle Scholar
  107. 107.
    Kaur G (2016) Solid oxide fuel cell components. Interfacial compatibility of SOFC glass seals. Springer, LondonCrossRefGoogle Scholar
  108. 108.
    Mahapatra MK, Lu K (2010) Glass-based seals for solid oxide fuel and electrolyzer cells—a review. Mater Sci Eng, R 67:65–85CrossRefGoogle Scholar
  109. 109.
    Shao Z, Tadé MO (2016) Intermediate-temperature solid oxide fuel cells, materials and application, green chemistry and sustainable technology. Springer, BerlinCrossRefGoogle Scholar
  110. 110.
    Singhal SC (2013) Solid oxide fuel cells: past, present and future. In: Irvine JTS, Connor P (eds) Solid oxide fuels cells: facts and figures, green energy and technology. Springer, LondonGoogle Scholar
  111. 111.
    Nakajo A, Van J, Favrat D (2013) Current state of models for the prediction of mechanical failures in solid oxide fuel cells. In: Irvine JTS, Connor P (eds) Solid oxide fuels cells: facts and figures, green energy and technology. Springer, LondonGoogle Scholar
  112. 112.
    Fergus JW (2005) Sealants for solid oxide fuel cells. J Pow Sour 147:46–57CrossRefGoogle Scholar
  113. 113.
    Weil KS, Hardy JS, Koeppel BJ (2006) New sealing concept for planar solid oxide fuel cells. J Mater Eng Perform 15:427–432CrossRefGoogle Scholar
  114. 114.
    Weil KS, Koeppel B (2008) Thermal stress analysis of the planar SOFC bonded compliant seal design. Int J Hydr Ener 33:3976–3990CrossRefGoogle Scholar
  115. 115.
    Simner SP, Stevenson JW (2001) Compressive mica seals for SOFC applications. J Pow Sour 102:310–316CrossRefGoogle Scholar
  116. 116.
    Duquette J, Petric A (2004) Silver wire seal design for planar solid oxide fuel cell stack. J Pow Sour 137:71–75CrossRefGoogle Scholar
  117. 117.
    Erskine KM, Meier AM, Pilgrim SM (2002) Brazing perovskite ceramics with silver/copper oxide braze alloys. J Mater Sci 37:1705–1709CrossRefGoogle Scholar
  118. 118.
    Weil K, Hardy J, Rice J et al (2006) Brazing as means of sealing ceramic membranes for use in advanced coal gasification process. Fuel 85:152–162CrossRefGoogle Scholar
  119. 119.
    Kuhn B, Wetzel F, Malzbender J et al (2009) Mechanical performance of reactive-air-brazed (RAB) ceramic/metal joints for solid oxide fuel cells at ambient temperature. J Pow Sour 193:199–202CrossRefGoogle Scholar
  120. 120.
    Zhang W, Wang X, Dong Y et al (2016) Development of flexible ceramic-glass seals for intermediate temperature planar solid oxide fuel cell. Int J Hydr Ener 41:6036–6044CrossRefGoogle Scholar
  121. 121.
    Chou YS, Stevvenson JW, Chick LA (2002) Ultra-low leak rate of hybrid compressive mica seals for solid oxide fuel cells. J Pow Sour 112:130–136CrossRefGoogle Scholar
  122. 122.
    Zhang W, Yan D, Duan J et al (2013) Development of Al2O3/glass-based multilayer composite seals for planar intermediate-temperature solid oxide fuel cells. Int J Hydr Ener 38:15371–15378CrossRefGoogle Scholar
  123. 123.
    Rautenen M, Thomann O, Himanen O et al (2014) Glass coated compressible solid oxide fuel cell seals. J Pow Sour 247:243–248CrossRefGoogle Scholar
  124. 124.
    Chen J, Yang H, Chadeyron R et al (2014) Tuning the interfacial reaction between CaO-SrO-Al2O3-B2O3-SiO2 sealing glass-ceramics and Cr-containing interconnect: crystalline structure vs. glass structure. J Eur Ceram Soc 34:1989–1996CrossRefGoogle Scholar
  125. 125.
    Yang Z, Stevenson JW, Meinhardt KD (2003) Chemical interactions of barium–calcium–aluminosilicate-based sealing glasses with oxidation resistant alloys. Solid State Ion 160:213–225CrossRefGoogle Scholar
  126. 126.
    Zhang T, Zou Q, Zeng F et al (2012) Improving the chemical compatibility of sealing glass for solid oxide fuel cells: blocking the reactive species by controlled crystallization. J Pow Sour 216:1–4CrossRefGoogle Scholar
  127. 127.
    Rodríguez-López S, Wei J, Laurenti KC et al (2017) Mechanical properties of solid oxide fuel cell glass-ceramic sealants in the system BaO/SrO-MgO-B2O3-SiO2. J Eur Cer Soc 37:3579–3594CrossRefGoogle Scholar
  128. 128.
    Sabato AG, Cempura G, Montinaro D et al (2016) Glass-ceramic sealant for solid oxide fuel cells application: characterization and performance in dual atmosphere. J Pow Sour 328:262–270CrossRefGoogle Scholar
  129. 129.
    Da Silva MJ, Bartolome JF, De Azac AH et al (2016) Glass ceramic sealants belonging to BAS (BaO–Al2O3–SiO2) ternary system modified with B2O3 addition: a different approach to access the SOFC seal issue. J Eur Cer Soc 36:631–644CrossRefGoogle Scholar
  130. 130.
    Zhang T, Fahrenholtz WG, Reis ST et al (2008) Borate volatility from SOFC sealing glasses. J Am Ceram Soc 91:2564–2569CrossRefGoogle Scholar
  131. 131.
    Zhang Q, Chen K, Tang D et al (2017) Effects of Nb2O5 and Gd2O3 doping on boron volatility and activity between glass seals and lanthanum-containing cathode. J Eur Cer Soc 37:1547–1555CrossRefGoogle Scholar
  132. 132.
    Chou YS, Thomsen EC, Choi JP et al (2012) Compliant alkali silicate sealing glass for solid oxide fuel cell applications: combined stability in isothermal ageing and thermal cycling with YSZ coated ferritic stainless steels. J Pow Sour 197:154–160CrossRefGoogle Scholar
  133. 133.
    Jiang SP, Christiansen L, Hughan B et al (2001) Effect of glass sealant materials on microstructure and performance of Sr-doped LaMnO3 cathodes. J Mater Sci Lett 20:695–697CrossRefGoogle Scholar
  134. 134.
    Suffner J, Dahlmann U (2013) Barium-free sealing materials for high chromium containing alloys. Fuel Cells 13:572–577CrossRefGoogle Scholar
  135. 135.
    Wang SF, Hsu YF, Cheng CS et al (2013) SiO2-Al2O3-Y2O3-ZnO glass sealants for intermediate temperature solid oxide fuel cell applications. Int J Hydr Ener 38:14779–14790CrossRefGoogle Scholar
  136. 136.
    Rodriguez-Lopez S, Haanappel VAC, Duran A et al (2016) Glass-ceramic seals in the system MgO-BaO-B2O3-SiO2 operating under simulated SOFC conditions. Int J Hydr Ener 41:15335–15345CrossRefGoogle Scholar
  137. 137.
    Wang SF, Lu HC, Liu YX et al (2017) Characteristics of glass sealants for intermediate-temperature solid oxide fuel cell applications. Ceram Int 43:S613–S620CrossRefGoogle Scholar
  138. 138.
    Puig J, Prange A, Arati B et al (2017) Optimization of the synthesis route of a barium boron aluminosilicate sealing glass for SOFC applications. Ceram Int 43:9753–9758CrossRefGoogle Scholar
  139. 139.
    Auer C, Lang M, Couturier K et al (2015) Solid oxide cell and stack testing, safety and quality assurance (SOCTESQA). ECS Trans 68:1897–1905CrossRefGoogle Scholar
  140. 140.
    Ivers-Tiffée E, Virkar AV (2003) Electrode polarisations. In: Singhal SC, Kendall K (eds) High temperature and solid oxide fuel cells fundamentals, design and applications. Elsevier, Amsterdam, pp 229–260CrossRefGoogle Scholar
  141. 141.
    U.S. Department of Energy (2004) Fuel cell handbook, 7th edn. EG&G Technical Services, MorgantownGoogle Scholar
  142. 142.
    ZAHNER-Elektrik GmbH &CoKG—Germany. Highend Data Acquisition Systems for Electrochemical Applications | Electronic Loads (2017) http://zahner.de/products/electronic-loads.html. Accessed 08 Dec 2017
  143. 143.
    FuelCon: Electric Loads for Test Equipment (2016) http://www.fuelcon.com/en/products/accessories/truedata-load.html. Accessed 08 Dec 2017
  144. 144.
    Klotz D, Weber A, Ivers-Tiffée E (2017) Practical guidelines for reliable electrochemical characterization of solid oxide fuel cells. Electrochim Acta 227:110–126CrossRefGoogle Scholar
  145. 145.
    Petrov AN, Cherepanov VA, Kononchuk OF et al (1990) Oxygen nonstoichiometry of La1−xSrxCoO3−δ (0 < x ≤ 0.6). J Solid State Chem 87:69–76CrossRefGoogle Scholar
  146. 146.
    Sereda VV, Tsvetkov DS, Ivanov IL et al (2015) Oxygen nonstoichiometry, defect structure and related properties of LaNi0.6Fe0.4O3−δ. J Mater Chem A 3:6028–6037CrossRefGoogle Scholar
  147. 147.
    Tsipis EV, Kharton VV (2011) Electrodes for high-temperature electrochemical cells: novel materials and recent trends. In: Kharton VV (ed) Solid state electrochemistry II: electrodes, interfaces and ceramic membranes. Wiley, Weinheim, pp 265–329CrossRefGoogle Scholar
  148. 148.
    Mosbæk RR, Hjelm J, Barfod R et al (2013) Electrochemical characterization and degradation analysis of large SOFC stacks by impedance spectroscopy. Fuel Cells 13:605–611CrossRefGoogle Scholar
  149. 149.
    Boukamp BA (1995) A linear Kronig-Kramers transform test for immittance data validation. J Electrochem Soc 142:1885–1894CrossRefGoogle Scholar
  150. 150.
    Esteban JM, Orazem ME (1991) On the application of the Kramers-Kronig relations to evaluate the consistency of electrochemical impedance data. J Electrochem Soc 138:67–76CrossRefGoogle Scholar
  151. 151.
    Boukamp BA, Macdonald JR (1994) Alternatives to Kronig-Kramers transformation and testing, and estimation of distributions. Solid State Ion 74:85–101CrossRefGoogle Scholar
  152. 152.
  153. 153.
    ZSimpWin (2015) http://www.ameteksi.com/products/software/zsimpwin. Accessed 24 Nov 2017
  154. 154.
    Ross Macdonald | How to Get the LEVM/LEVMW -Version 8.13 Program (2015) http://jrossmacdonald.com/levmlevmw/ Accessed 24 Nov 2017
  155. 155.
    EIS Spectrum Analyser http://www.abc.chemistry.bsu.by/vi/analyser/. Accessed 24 Nov 2017
  156. 156.
    Elchemea Analytical http://www.elchemea.com/. Accessed 30 Nov 2017
  157. 157.
    Leonide A, Sonn V, Weber A et al (2008) Evaluation and modeling of the cell resistance in anode-supported solid oxide fuel cells. J Electrochem Soc 155:B36–B41CrossRefGoogle Scholar
  158. 158.
    Tallgren J, Boigues Muñoz C, Mikkola J et al (2017) Determination of temperature and fuel utilization distributions in SOFC stacks with EIS. ECS Trans 78:2141–2150CrossRefGoogle Scholar
  159. 159.
    Comminges C, Fu QX, Zahid M et al (2012) Monitoring the degradation of a solid oxide fuel cell stack during 10,000 h via electrochemical impedance spectroscopy. Electrochim Acta 59:367–375CrossRefGoogle Scholar
  160. 160.
    Blum L, de Haart LGJ, Malzbender J et al (2016) Anode-supported solid oxide fuel cell achieves 70,000 hours of continuous operation. Energy Technol 4:939–942CrossRefGoogle Scholar
  161. 161.
    Blum L, Batfalsky P, Fang Q et al (2015) SOFC stack and system development at Forschungszentrum Jülich. J Electrochem Soc 162:F1199–F1205CrossRefGoogle Scholar
  162. 162.
    Hagen A, Høgh JVT, Barfod R (2015) Accelerated testing of solid oxide fuel cell stacks for micro combined heat and power application. J Pow Sour 300:223–228CrossRefGoogle Scholar
  163. 163.
    Heneka MJ, Ivers-Tiffée E (2006) Accelerated Life Tests for Fuel Cells. ECS Trans 1:377–384CrossRefGoogle Scholar
  164. 164.
    Holzer L, Iwanschitz B, Hocker Th et al (2013) Redox cycling of Ni-YSZ anodes for solid oxide fuel cells: Influence of tortuosity, constriction and percolation factors on the effective transport properties. J Pow Sour 242:179–194CrossRefGoogle Scholar
  165. 165.
    Pecho OM, Mai A, Münch B et al (2015) 3D microstructure Effects in Ni-YSZ anodes: influence of TPB lengths on the electrochemical performance. Materials 8(10):7129–7144CrossRefGoogle Scholar
  166. 166.
    Sarantaridis D, Rudkin RA, Atkinson A (2008) Oxidation failure modes of anode-supported solid oxide fuel cells. J Pow Sour 180:704–710CrossRefGoogle Scholar
  167. 167.
    Laurencin J, Delette G, Morel B et al (2009) Solid oxide fuel cells damage mechanisms due to Ni-YSZ re-oxidation: case of the anode supported cell. J Pow Sour 192:344–352CrossRefGoogle Scholar
  168. 168.
    Laurencin J, Roche V, Jaboutian C et al (2012) Ni-8YSZ cermet re-oxidation of anode supported solid oxide fuel cell: from kinetics measurements to mechanical damage prediction. Int J Hydr Ener 37:12557–12573CrossRefGoogle Scholar
  169. 169.
    Klemensø T, Mogensen M (2007) Ni–YSZ solid oxide fuel cell anode behavior upon redox cycling based on electrical characterization. J Am Ceram Soc 90:3582–3588CrossRefGoogle Scholar
  170. 170.
    Creative Commons—Attribution 4.0 International—CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode. Accessed 17 Jan 2018
  171. 171.
    Lang M, Auer C, Braniek G et al (2015) Understanding the electrochemical performance of SOFC stacks. ECS Trans 68:2441–2451CrossRefGoogle Scholar
  172. 172.
    Kupecki J (2015) Off-design analysis of a micro-CHP unit with solid oxide fuel cells fed by DME. Int J Hydr Ener 40:12009–12022CrossRefGoogle Scholar
  173. 173.
    Kupecki J, Skrzypkiewicz M, Stefanski M et al (2015) Selected aspects of the design and operation of the first Polish residential micro-CHP unit based on solid oxide fuel cells. J Pow Tech 96(4):270–275Google Scholar
  174. 174.
    Kupecki J, Skrzypkiewicz M, Wierzbicki M et al (2017) Experimental and numerical analysis of a serial connection of two SOFC stacks in a micro-CHP system fed by biogas. Int J Hydr Ener 42:3487–3497CrossRefGoogle Scholar
  175. 175.
    Fang Q, Blum L, Peters R et al (2015) SOFC stack performance under high fuel utilization. Int J Hydr Ener 40:1128–1136CrossRefGoogle Scholar
  176. 176.
    Lim HT, Virkar AV (2008) A study of solid oxide fuel cell stack failure by inducing abnormal behavior in a single cell test. J Pow Sour 185:790–800CrossRefGoogle Scholar
  177. 177.
    ENDURANCE—handbook http://www.durablepower.eu/index.php/handbook. Accessed 19 Dec 2017
  178. 178.
    Mastropasqua L, Campanari S, Brouwer J (2017) Solid oxide fuel cell short stack performance testing—part A: experimental analysis and μ-combined heat and power unit comparison. J Pow Sour 371:225–237CrossRefGoogle Scholar
  179. 179.
    Elcogen’s stack performance—Nellhi http://www.nellhi.eu/results/elcogens-stack-performance-1. Accessed 20 Dec 2017

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Yevgeniy Naumovich
    • 1
  • Marcin Błesznowski
    • 1
  • Agnieszka Żurawska
    • 1
  1. 1.Department of High Temperature Electrochemical Processes (HiTEP)Institute of Power EngineeringWarsawPoland

Personalised recommendations