Advertisement

Abstract

This chapter presents the current status of energy technologies and compares different types of fuel cells. The potential of SOFCs is discussed and the key features of the cells are described. Historic and theoretical background is given, and the governing equations used to describe the operation of SOFCs are given and described. In the chapter, you can find an elaboration of the losses in a fuel cell, and the difference between theoretical and actual voltage is highlighted. The discussion on the potential of the SOFC is complemented by the introduction of the basic concept of distributed energy and a comparison of the process chains for large stationary power plants versus micro- and small-distributed cogenerators fed with locally available fuel resources.

Keywords

Solid oxide fuel cells SOFC Modeling System design Micro-CHP Polygeneration 

References

  1. 1.
    Micro-map: mini and micro CHP-market assessment and development plan. In: Technical report (2002) European Commission SAVE programme. DGTRENGoogle Scholar
  2. 2.
    2004/8/EC directive on the promotion of cogeneration based on a useful heat demand in the internal energy market and amending directive 92/62/EEC (2004) Technical report, European CommissionGoogle Scholar
  3. 3.
    Kattke KJ, Braun RJ, Colclasure AM et al (2011) High-fidelity stack and system modeling for tubular solid oxide fuel cell system design and thermal management. J Pow Sour 196:3790–3802CrossRefGoogle Scholar
  4. 4.
    Kirubakaran A, Jain S, Nema RK (2009) A review of fuel cell technologies and power electronic interface. Renew Sust Ener Rev 13:2430–2440CrossRefGoogle Scholar
  5. 5.
    Mekhilef S, Saidur R, Safari A (2012) Comparative study of different fuel cell technologies. Renew Sust Ener Rev 16:981–989CrossRefGoogle Scholar
  6. 6.
    Schonbein CF (1838) Further experiments on the current electricity excited by chemical tendencies, independent of ordinary chemical action. Phil Mag J Sci 12:311–317Google Scholar
  7. 7.
    Grove WR (1839) On voltaic series and the combination of gases by platinum. Phil Mag 14:127–130Google Scholar
  8. 8.
    Grove WR (1842) On a gaseous voltaic battery. Phil Mag XXI:417–420Google Scholar
  9. 9.
    Nernst WH (1887) Űber die electromotorischen Kräfte, welche durch den Magnetismus in von einem W¨armestrome durchflossenen Metallplatten geweckt werden. Annalen Phy Chem 267(8):760–789CrossRefGoogle Scholar
  10. 10.
    Barbir F (2012) PEM fuel cells—theory and practice, 2nd edn. Elsevier, AmsterdamGoogle Scholar
  11. 11.
    DEMCOPEM 2 MW project. http://www.demcopem-2mw.eu. Accessed 30 Oct 2017
  12. 12.
    Guandalini G, Foresti S, Campanari S et al (in press) Simulation of a 2 MW PEM fuel cell plant for hydrogen recovery from Chlor-Alkali Industry. Ener ProcGoogle Scholar
  13. 13.
    Li QF, He RH, Jensen JO et al (2003) Approaches and recent development of polymer electrolyte membranes for fuel cells operating above 100 °C. Chem Mat 15:4896–4915CrossRefGoogle Scholar
  14. 14.
    CISTEM project. http://cordis.europa.eu/result/rcn/197100_en.html. Accessed 30 Oct 2017
  15. 15.
    Taccani R, Chincese T, Zuliani N (2017) Performance analysis of a micro CHP system based on high temperature PEM fuel cells subjected to degradation. Ener Proc 126:421–428CrossRefGoogle Scholar
  16. 16.
    Sammes N, Bove R, Stahl K (2004) Phosphoric acid fuel cells: fundamentals and applications. Curr Opin Solid State Mat Sci 8(5):372–378CrossRefGoogle Scholar
  17. 17.
    Adamson K-A (2010) Stationary fuel cells: an overview. Elsevier, AmsterdamGoogle Scholar
  18. 18.
  19. 19.
    Larminie J, Dicks A (2003) Fuel cell systems explained, 2nd edn. Wiley, LondonCrossRefGoogle Scholar
  20. 20.
    Alkammonia project. http://alkammonia.eu. Accessed 30 Oct 2017
  21. 21.
    Cox B, Treyer K (2015) Environmental and economic assessment of a cracked ammonia fuelled alkaline fuel cell for off-grid power applications. J Pow Sour 275:322–333CrossRefGoogle Scholar
  22. 22.
    Kulkarni A, Giddey S (2012) Materials issues and recent developments in molten carbonate fuel cells. J Solid State Electrochem 16(10):3123–3146CrossRefGoogle Scholar
  23. 23.
    Status of POSCO ENERGY’s MCFC Business and Technology Development. http://www.iphe.net/docs/Meetings/SC26/Workshop/Session3/IPHE%20Forum%20Gwangju%20Session%203%20Distributed%20Power%20-%20POSCO.pdf. Accessed 30 Oct 2017
  24. 24.
    Seo H, Park W, Lim H (2016) The efficiencies of internal reforming molten carbonate fuel cell fueled by natural gas and synthetic natural gas from coal. J Electrochem Ener Conv Stor 13(1):011005–011015CrossRefGoogle Scholar
  25. 25.
    Promising perovskite cathode for low-temperature SOFCs (2017) Fuel Cells Bull 2:15Google Scholar
  26. 26.
    Pfeifer T, Nousch L, Lieftink D et al (2013) System design and process layout for a SOFC micro-CHP unit with reduced operating temperatures. Int J Hydr Ener 38:431–439CrossRefGoogle Scholar
  27. 27.
    Matsuzaki Y, Tachikawa Y, Somekawa T et al (2015) Effect of proton-conduction in electrolyte on electric efficiency of multi-stage solid oxide fuel cells. Sci Rep 5(12640):1–10Google Scholar
  28. 28.
    Singhal SC, Kendall K (2003) High temperature solid oxide fuel cells: fundamentals. Elsevier, Design and ApplicationsGoogle Scholar
  29. 29.
    DEMOSOFC project http://www.demosofc.eu. Accessed 30 Oct 2017
  30. 30.
    PNNL reports record efficiency for small SOFC for homes (2012) Fuel Cells Bull 7:10Google Scholar
  31. 31.
    Blum L, Meulenberg WA, Nabielek H et al (2005) World-wide SOFC technology overview and benchmark. Int J App Ceram Tech 2(6):482–492CrossRefGoogle Scholar
  32. 32.
    Steinberger-Wilckens R, Mubbala R (2012) Deliverable WP 6.4 final report: study on the integration of an SOFC system into the onboard electricity system of the biogas bus. Technical report, PLANET GbR OldenburgGoogle Scholar
  33. 33.
    O’Hayre R, Cha SW, Colella W (2005) Fuel cell fundamentals. Wiley, Hoboken, New JerseyGoogle Scholar
  34. 34.
    Larminie J, Dicks A (2003) Fuel cell systems explained. Wiley, West Sussex, EnglandCrossRefGoogle Scholar
  35. 35.
    US Department of Energy Office of Fossil Energy National Energy Technology Laboratory. Fuel Cell Handbook (2004) 7th edn. EG G Technical Services, Inc.Google Scholar
  36. 36.
    Xie Y, Ding H, Xue X (2013) Direct methane fueled solid oxide fuel cell model with detailed reforming reactions. Chem Eng J 228:917–924CrossRefGoogle Scholar
  37. 37.
    Zhou ZF, Gallo C, Pague MB et al (2004) Direct oxidation of jet fuels and Pennsylvania crude oil in a solid oxide fuel cell. J Pow Sour 133:181–187CrossRefGoogle Scholar
  38. 38.
    Kupecki J (2015) Off-design analysis of a micro-CHP unit with solid oxide fuel cells fed by DME. Int J Hydr Ener 40(35):12009–12022CrossRefGoogle Scholar
  39. 39.
    Cinti G, Discepoli G, Sisani E et al (2016) SOFC operating with ammonia: stack test and system analysis. Int J Hydr Ener 41(31):13583–13590CrossRefGoogle Scholar
  40. 40.
    Rokni M (in press) Addressing fuel recycling in solid oxide fuel cell systems fed by alternative fuels. Energy.  https://doi.org/10.1016/j.energy.2017.03.082
  41. 41.
    Kakac S, Pramuanjaroenkij A, Zhou XY (2007) A review of numerical modeling of solid oxide fuel cells. Int J Hydr Ener 32:761–786CrossRefGoogle Scholar
  42. 42.
    Pasaogullari U, Wang CY (2003) Computational fluid dynamics modeling of solid oxide fuel cells. Electrochem Soc Proc 07:1403–1412Google Scholar
  43. 43.
    Steen V, Kenney B, Pharoah JG (2004) Mathematical modeling of the transport phenomena and the chemical/electrochemical reactions in solid oxide fuel cells: a review. In: Proceedings of Canadian hydrogen and fuel cells conference, Toronto, CanadaGoogle Scholar
  44. 44.
    Dagan G (1989) Flow and transport in porous formations. Springer, BerlinCrossRefGoogle Scholar
  45. 45.
    Iwata M, Hikosaka T, Morita M et al (2000) Performance analysis of planar-type unit SOFC considering current and temperature distributions. Solid State Ionics 132:297–308CrossRefGoogle Scholar
  46. 46.
    Kupecki J, Mich D, Motylinski K (2017) Computational fluid dynamics analysis of an innovative start-up method of high temperature fuel cells using dynamic 3D model. Pol J Chem Tech 19(1):67–73CrossRefGoogle Scholar
  47. 47.
    Pasaogullari U, Wang CY (2003) Computational fluid dynamics modeling of solid oxide fuel cells. Electrochem Soc Proc 07:1403–1412Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of High Temperature Electrochemical Processes (HiTEP)Institute of Power EngineeringWarsawPoland

Personalised recommendations