Skip to main content

Neurosurgical Anatomy and Approaches to Simulation in Neurosurgical Training

  • 810 Accesses

Part of the Comprehensive Healthcare Simulation book series (CHS)

Abstract

Quality of neurosurgical care and patient outcomes are inextricably linked to surgical and technical proficiency and a thorough working knowledge of microsurgical anatomy. Simulated neurosurgical training is essential for the development and refinement of technical skills prior to their use on a living patient. Recent biotechnological advances—including 3D microscopy and endoscopy, 3D printing, virtual reality, surgical simulation, surgical robotics, and advanced neuroimaging—have proved to reduce the learning curve, improve conceptual understanding of complex anatomy, and enhance visuospatial skills in neurosurgical training. For developing neurosurgeons, such tools can reduce the learning curve, improve conceptual understanding of complex anatomy, and enhance visuospatial skills. We explore the current and future roles and application of virtual reality and simulation in neurosurgical training.

Keywords

  • Virtual reality
  • Simulation
  • Neurosurgery
  • Surgical training
  • Robotics
  • Augmented reality
  • Stereoscopic
  • 3D

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-75583-0_17
  • Chapter length: 26 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   84.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-75583-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   109.99
Price excludes VAT (USA)
Fig. 17.1
Fig. 17.2
Fig. 17.3
Fig. 17.4
Fig. 17.5
Fig. 17.6
Fig. 17.7
Fig. 17.8
Fig. 17.9
Fig. 17.10
Fig. 17.11
Fig. 17.12

Abbreviations

2D:

Two-dimensional

3D:

Three-dimensional

6D:

6 Degrees

ADC:

Apparent diffusion coefficient

AR:

Augmented reality

ARAI:

Augmented reality and artificial intelligence

CTA:

Computed tomography angiography

FA:

Fractional anisotropy

fMR:

Functional magnetic resonance

HMDs:

Head-mounted displays

MRA:

Magnetic resonance angiography

OM:

Operating microscope

OR:

Operating room

RGB:

Red green blue

SSML:

Simulation markup language

VR:

Virtual reality

VTK:

Visualization tool kit

References

  1. Cappabianca P, Magro F. The lesson of anatomy. Surg Neurol. 2009;71:597–89.

    CrossRef  Google Scholar 

  2. Moon K, Filis AK, Cohen AR. The birth and evolution of neuroscience through cadaveric dissection. Neurosurgery. 2010;67:799–810.

    CrossRef  Google Scholar 

  3. Aboud E, Al-Mefty O, Yaşargil MG. New laboratory model for neurosurgical training that simulates live surgery. J Neurosurg. 2002;97:1367–72.

    CrossRef  Google Scholar 

  4. Kockro RA, Stadie A, Schwandt E, et al. A collaborative virtual reality environment for neurosurgical planning and training. Neurosurgery. 2007;61:379–91.

    CrossRef  Google Scholar 

  5. Kin T, Nakatomi H, Shojima M, et al. A new strategic neurosurgical planning tool for brainstem cavernous malformations using interactive computer graphics with multimodal fusion images. J Neurosurg. 2012;117(1):78–88.

    CrossRef  Google Scholar 

  6. Abhari K, Baxter JSH, Chen ECS, et al. Training for planning tumour resection: augmented reality and human factors. IEEE Trans Biomed Eng. 2015;62(6):1466–77.

    CrossRef  Google Scholar 

  7. Moisi M, Tubbs RS, Page J, et al. Training medical novices in spinal microsurgery: does the modality matter? A pilot study comparing traditional microscopic surgery and a novel robotic optoelectronic visualization tool. Cureus. 2016;8(1):e469.

    PubMed  PubMed Central  Google Scholar 

  8. Ruisoto P, Juanes JA, Contador I, Mayoral P, Prats-Galino A. Experimental evidence for improved neuroimaging interpretation using three-dimensional graphic models. Anat Sci Educ. 2012;5(3):132–7.

    CrossRef  Google Scholar 

  9. Weigl M, Stefan P, Abhari K. Intra-operative disruptions, surgeon’s mental workload, and technical performance in a full-scale simulated procedure. Surg Endosc. 2015;30(2):559–66.

    CrossRef  Google Scholar 

  10. Valdés PA, Roberts DW, Lu F-K, Golby A. Optical technologies for intraoperative neurosurgical guidance. Neurosurg Focus. 2016;40(3):E8.

    CrossRef  Google Scholar 

  11. Healey AN, Sevdalis N, Vincent CA. Measuring intra-operative interference from distraction and interruption observed in the operating theatre. Ergonomics. 2006;49:589–604.

    CrossRef  CAS  Google Scholar 

  12. Christian CK, Gustafson ML, Roth EM, et al. A prospective study of patient safety in the operating room. Surgery. 2006;139:159–73.

    CrossRef  Google Scholar 

  13. Etchells E, O’Neill C, Bernstein M. Patient safety in surgery: error detection and prevention. World J Surg. 2003;27:936–42.

    CrossRef  Google Scholar 

  14. Schreuder HW, Wolswijk R, Zweemer RP, Schijven MP, Verheijen RH. Training and learning robotic surgery, time for a more structured approach: a systematic review. BJOG. 2012;119:137–49.

    CrossRef  CAS  Google Scholar 

  15. Maertens H, Madani A, Landry T, Vermassen F, Van Herzeele I, Aggarwal R. Systematic review of e-learning for surgical training. Br J Surg. 2016;103:1428–37.

    CrossRef  CAS  Google Scholar 

  16. Urgun K, Toktas ZO, Akakin A, Yilmaz B, Sahin S, Kilic TA. Very quickly prepared, colored silicone material for injecting into cerebral vasculature for anatomical dissection: a novel and suitable material for both fresh and non-fresh cadavers. Turk Neurosurg. 2016;26(4):568–73.

    PubMed  Google Scholar 

  17. O’Donnell RD, Eggemeier FT. Workload assessment methodology. In: Handbook of perception and human performance. Cognitive processes and performance, vol. 2. New York: Wiley; 1986. p. 42.1–4.

    Google Scholar 

  18. Selye H. The evolution of the stress concept. Am Sci. 1973;61:692–9.

    CAS  PubMed  Google Scholar 

  19. Satava RM. Historical review of surgical simulation-a personal prospective. World J Surg. 2008;32:141.

    CrossRef  Google Scholar 

  20. Hohl BL, Neal DW, Kleinhenz DT, Hoh DJ, Mocco J, Barker FGII. Higher complications and no improvement in mortality in the ACGME resident duty-hour restriction era: an analysis of more than 107.000 neurosurgical trauma patients in Nationwide inpatient sample database. Neurosurgery. 2012;70:1369–82.

    CrossRef  Google Scholar 

  21. Selden NR, Barbaro N, Origitano TC, Burchiel KJ. Fundamental skills for entering neurosurgery residents: report of a Pacific region “boot camp” pilot course, 2009. Neurosurgery. 2011;68:759–64.

    CrossRef  Google Scholar 

  22. Bohnen HG, Gaillard AW. The effects of sleep loss in a combined tracking and time estimation task. Ergonomics. 1994;37:1021–30.

    CrossRef  CAS  Google Scholar 

  23. Mascord DJ, Heath RA. Behavioral and physiological indices of fatigue in a visual tracking task. J Saf Res. 1992;23:19–25.

    CrossRef  Google Scholar 

  24. Borghini G, Astolfi L, Vecchiato G, Mattia D, Babiloni F. Measuring neurophysiological signals in aircraft pilots and car drivers for the assessment of mental workload, fatigue and drowsiness. Neurosci Biobehav Rev. 2014;44:58–75.

    CrossRef  Google Scholar 

  25. Muns A, Meixensberger J, Lindner D. Evaluation of a novel phantom-based neurosurgical training system. Surg Neurol Int. 2014;5:173.

    CrossRef  Google Scholar 

  26. Patel A, Koshy N, Ortega-Barnett J, Chan HC, Kuo Y, Luciano C, et al. Neurological tactile discrimination training with haptic-based virtual reality simulation. Neurol Res. 2014;36:1035–9.

    CrossRef  Google Scholar 

  27. Ofek E, Pizov R, Bitterman N. From a radial operating theatre to a self-contained operating table. Anaesthesia. 2006;61:548–52.

    CrossRef  CAS  Google Scholar 

  28. Ganju A, Aoun SG, Daou MR, Ahmadieh TY, Chang Wang L, et al. The role of simulation in neurosurgical education: a survey of 99 United States neurosurgery program directors. World Neurosurg. 2013;80:e1–8.

    CrossRef  Google Scholar 

  29. Kshettry VR, Mullin JP, Schlenk R, Recinos PF, Benzel EC. The role of laboratory dissection training in neurosurgical residency: results of a national survey. World Neurosurg. 2014;82:554–9.

    CrossRef  Google Scholar 

  30. Wehbe-Janek H, Colbert CY, Govednik-Horny C, White BAA, Thomas S, Shabahang M. Residents’ perspectives of the value of a simulation curriculum in a general surgery residency program: a multimethod study of stakeholder feedback. Surgery. 2012;151(6):815–21.

    CrossRef  Google Scholar 

  31. Breimer GE, Bodani V, Looi T, Drake JM. Design and evaluation of a new synthetic brain simulator for endoscopic third ventriculostomy. J Neurosurg. 2015;15(1):82–8.

    Google Scholar 

  32. Congress of Neurological Surgeons. Congress Quarterly. https://www.cns.org/news-advocacy/congress-quarterly; 2016 Accessed 1 Dec 2016.

  33. Cleary DR, Siler DA, Whitney N, Selden NR. A microcontroller-based simulation of dural venous sinus injury for neurosurgical training. J Neurosurg. 2017:1–7.

    Google Scholar 

  34. Grandjean E. Fatigue in industry. Br J Ind Med. 1979;36:175–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Grandjean E. Fitting the task to the man: a textbook of occupational ergonomics. 4th ed: Taylor & Francis; 1988. philadelphia, PA

    Google Scholar 

  36. Johns MW, Chapman R, Crowley K, Tucker A. A new method for assessing the risks of drowsiness while driving. Somnologie. 2008;12:66–74.

    CrossRef  Google Scholar 

  37. Hull L, Arora S, Kassab E, Kneebone R, Sevdalis N. Assessment of stress and teamwork in the operating room: an exploratory study. Am J Surg. 2011;201:24–30.

    CrossRef  Google Scholar 

  38. Arora S, Sevdalis N, Nestel D, Woloshynowych M, Darzi A, Kneebone R. The impact of stress on surgical performance: a systematic review of the literature. Surgery. 2010;147:318–30. e1-e6

    CrossRef  Google Scholar 

  39. Wetzel CM, Kneebone RL, Woloshynowych M, et al. The effects of stress on surgical performance. Am J Surg. 2006;191:5–10.

    CrossRef  Google Scholar 

  40. Cinaz B, La Marca R, Arnrich B, Tröster G Monitoring of mental workload levels. Proceedings of the IADIS International Conference e-Healt. pp. 189–193. 2010.

    Google Scholar 

  41. Yurko YY, Scerbo MW, Prabhu AS, Acker CE, Stefanidis D. Higher mental workload is associated with poorer laparoscopic performance as measured by the NASA-TLX tool. Sim Healthcare. 2010;5:267–71.

    CrossRef  Google Scholar 

  42. Zheng B, Cassera MA, Martinec DV, Spaun GO, Swanstrom LL. Measuring mental workload during the performance of advanced laparoscopic tasks. Surg Endosc. 2010;24:45–50.

    CrossRef  Google Scholar 

  43. Hart SG, Staveland LE. Development of NASA-TLX: results of empirical and theoretical research. In: Human Mental Workload. Amsterdam: Elsevier; 1988. p. 139–83.

    CrossRef  Google Scholar 

  44. Montero PN, Acker CE, Heniford BT, et al. Single incision laparoscopic surgery (SILS) is associated with poorer performance and increased surgeon workload compared with standard laparoscopy. Am Surg. 2011;77:73–7.

    PubMed  Google Scholar 

  45. Carswell C, Clarke D, Seales W. Assessing mental workload during laparoscopic surgery. Surg Innov. 2005;12:80–90.

    CrossRef  Google Scholar 

  46. Carter FJ, Schijven MP, Aggarwal R, et al. Consensus guidelines for validation of virtual reality surgical simulators. Surg Endosc. 2005;19(12):1523–32.

    CrossRef  CAS  Google Scholar 

  47. Das P, Goyal T, Xue A, Kalatoor S, Guillaume D. Simulation training in neurological surgery. Austin Neurosurg Open Access. 2014;1(1):1004–10.

    Google Scholar 

  48. Anichini G, Evins AI, Boeris D, Stieg PE, Bernardo A. Three-dimensional endoscope-assisted surgical approach to the foramen magnum and craniovertebral junction: minimizing bone resection with the aid of the endoscope. World Neurosurg. 2014;82(6):e797–805.

    CrossRef  Google Scholar 

  49. Raspelli S, Pallavicini F, Carelli L, et al. Validating the neuro VR-based virtual version of the multiple errands test: preliminary results. Presence Teleop Virt. 2012;21(1):31–42.

    CrossRef  Google Scholar 

  50. UIC BVIS Students. Surgical simulation and augmented reality. https://uicbvisstudents.wordpress.com/tag/immersive-touch/; 2016 Accessed 1 Dec 2016.

  51. Willaert WIM, Aggarwal R, Van Herzeele I, Cheshire NJ, Vermassen FE. Recent advancements in medical simulation: patient-specific virtual reality simulation. World J Surg. 2012;36(7):1703–12.

    CrossRef  Google Scholar 

  52. Kockro RA, Reisch R, Serra L, Goh LC, Lee E, Stadie AT. Image-guided neurosurgery with 3-dimensional multimodal imaging data on a stereoscopic monitor. Neurosurgery. 2013;72:A78–88.

    CrossRef  Google Scholar 

  53. Barsom EZ, Graafland M, Schijven MP. Systematic review on the effectiveness of augmented reality applications in medical training. Surg Endosc. 2016;30:4174–83.

    CrossRef  CAS  Google Scholar 

  54. Doulgeris JD, Gonzalez-Blohm SA, Filis AK, Shea Thomas M, Aghayev K, Vrionis FD. Robotics in neurosurgery: evolution, current challenges, and compromises. Cancer Control. 2015;22(3):352–9.

    CrossRef  Google Scholar 

  55. Goetz J, Engineering. New technology may help surgeons save lives. https://uanews.arizona.edu/story/new-technology-may-help-surgeons-save-lives. Accessed 1 Dec 2016.

  56. Espadaler JM, Conesa G. (2011) Navigated repetitive transcranial magnetic stimulation (TMS) for language mapping: a new tool for surgical planning. In: Duffau H. (eds) Brain Mapp. Springer, Vienna.

    CrossRef  Google Scholar 

  57. De Notaris M, Palma K, Serra L, et al. A three-dimensional computer-based perspective of the skull base. World Neurosurg. 2014;82(6):S41–8.

    CrossRef  Google Scholar 

  58. Christian E, Yu C, Apuzzo MLJ. Focused ultrasound: relevant history and prospects for the addition of mechanical energy to the neurosurgical armamentarium. World Neurosurg. 2014;82(3–4):354–65.

    CrossRef  Google Scholar 

  59. Robison RA, Liu CY, Apuzzo MLJ. Man, mind, and machine: the past and future of virtual reality simulation in neurologic surgery. World Neurosurg. 2011;76(5):419–30.

    CrossRef  Google Scholar 

  60. Hochman JB, Kraut J, Kazmerik K, Unger BJ. Generation of a 3D printed temporal bone model with internal fidelity and validation of the mechanical construct. Otolaryngol Head Neck Surg. 2013;150(3):448–54.

    CrossRef  Google Scholar 

  61. Lobel DA, Elder JB, Schirmer CM, Bowyer MW, Rezai AR. A novel craniotomy simulator provides a validated method to enhance education in the management of traumatic brain injury. Neurosurgery. 2013;73(Suppl 1):57–65.

    CrossRef  Google Scholar 

  62. Hooten KG, Lister JR, Lombard G, et al. Mixed reality ventriculostomy simulation. Neurosurgery. 2014;10:576–81.

    CrossRef  Google Scholar 

  63. Ramaswamy A, Monsuez B, Tapus A. Saferobots: a model-driven approach for designing robotic software architectures. Collab Technolog Syst. 2014:131–4.

    Google Scholar 

  64. Dharmendra, La G, Saxena K. AUC based software defect prediction for object-oriented systems. e-Learning. 2016;64(57)

    Google Scholar 

  65. Lee B, Liu CY, Apuzzo MLJ. Quantum computing: a prime modality in Neurosurgery’s future. World Neurosurg. 2012;78(5):404–8. 3

    CrossRef  Google Scholar 

  66. Sabbadin M. Interaction and rendering with harvested 3D data. 2016.

    Google Scholar 

  67. Kurzhals K, Burch M, Pfeiffer T, Weiskopf D. Eye tracking in computer-based visualization. Comput Sci Eng. 2015;17(5):64–71.

    CrossRef  Google Scholar 

  68. DeFanti TA, Sandin DJ, Cruz-Neira CA. “Room” with a “view”. IEEE Spectr. 1993;30(10):30–3.

    CrossRef  Google Scholar 

  69. Lemole GM, Banerjee PP, Luciano C, Neckrysh S, Charbel FT. Virtual reality in neurosurgical education. Neurosurgery. 2007;61(1):142–9.

    CrossRef  Google Scholar 

  70. Besharati Tabrizi L, Mahvash M. Augmented reality–guided neurosurgery: accuracy and intraoperative application of an image projection technique. J Neurosurg. 2015;123(1):206–11.

    CrossRef  Google Scholar 

  71. Pun T, Roth P, Bologna G, Moustakas K, Tzovaras D. Image and video processing for visually handicapped people. EURASIP J Image Video Process. 2007;2007:1–12.

    CrossRef  Google Scholar 

  72. Kersten-Oertel M, Gerard I, Drouin S, et al. Augmented reality in neurovascular surgery: feasibility and first uses in the operating room. Int J Comput Assist Radiol Surg. 2015;10(11):1823–36.

    CrossRef  Google Scholar 

  73. Barry Issenberg S, Mcgaghie WC, Petrusa ER, Lee Gordon D, Features SRJ. Uses of high-fidelity medical simulations that lead to effective learning: a BEME systematic review. Med Teach. 2005;27(1):10–28.

    CrossRef  Google Scholar 

  74. Kirkman MA, Ahmed M, Albert AF, Wilson MH, Nandi D, Sevdalis N. The use of simulation in neurosurgical education and training. J Neurosurg. 2014;121(2):228–46. 6

    CrossRef  Google Scholar 

  75. Choudhury N, Gélinas-Phaneuf N, Delorme S, Del Maestro R. Fundamentals of neurosurgery: virtual reality tasks for training and evaluation of technical skills. World Neurosurg. 2013;80(5):e9–e19.

    CrossRef  Google Scholar 

  76. Bajka M, Tuchschmid S, Bachofen D, Fink D, Szekely G, Harders M. Hysteroskopie: Operations training in der Virtuellen Realität. Geburtshilfe Frauenheilkd. 2008;68(S 01). S43.

    Google Scholar 

  77. Morris D, Sewell C, Barbagli F, Salisbury K, Blevins NH, Girod S. Visuohaptic simulation of bone surgery for training and evaluation. IEEE Comput Graph Appl. 2006;26(6):48–57.

    CrossRef  Google Scholar 

  78. Steuer J. Defining virtual reality: dimensions determining telepresence. J Commun. 1992;42(4):73–93.

    CrossRef  Google Scholar 

  79. Burdea GC, Lin MC, Ribarsky W, Watson B. Guest editorial: special issue on Haptics, virtual, and augmented reality. IEEE Trans Vis Comput Graph. 2005;11(6):611–3.

    CrossRef  Google Scholar 

  80. Bernardo A, Preul MC, Zabramski JM, Spetzler RF. A three-dimensional interactive virtual dissection model to simulate Transpetrous surgical avenues. Neurosurgery. 2003;52:499–505.

    CrossRef  Google Scholar 

  81. Evans CH, Schenarts KD. Evolving educational techniques in surgical training. Surg Clin North Am. 2016;96:71–88.

    CrossRef  Google Scholar 

  82. Willis RE, Van Sickle KR. Current status of simulation-based training in graduate medical education. Surg Clin North Am. 2015;95:767–79.

    CrossRef  Google Scholar 

  83. Gasco J, Holbrook TJ, Patel A, et al. Neurosurgery simulation in residency training. Neurosurgery. 2013;73:S39–45.

    CrossRef  Google Scholar 

  84. Schirmer CM, Mocco J, Elder JB. Evolving virtual reality simulation in neurosurgery. Neurosurgery. 2013;73:S127–37.

    CrossRef  Google Scholar 

  85. Dimou S, Battisti RA, Hermens DF, Lagopoulos JA. Systematic review of functional magnetic resonance imaging and diffusion tensor imaging modalities used in presurgical planning of brain tumour resection. Neurosurg Rev. 2012;36(2):205–14.

    CrossRef  Google Scholar 

  86. Romano A, D’Andrea G, Minniti G, et al. Pre-surgical planning and MR-tractography utility in brain tumour resection. Eur Radiol. 2009;19(12):2798–808.

    CrossRef  CAS  Google Scholar 

  87. Yoshino M, Kin T, Ito A, et al. Combined use of diffusion tensor tractography and multifused contrast-enhanced FIESTA for predicting facial and cochlear nerve positions in relation to vestibular schwannoma. J Neurosurg. 2015;123(6):1480–8.

    CrossRef  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Bernardo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Bernardo, A., Evins, A.I. (2018). Neurosurgical Anatomy and Approaches to Simulation in Neurosurgical Training. In: Alaraj, A. (eds) Comprehensive Healthcare Simulation: Neurosurgery. Comprehensive Healthcare Simulation. Springer, Cham. https://doi.org/10.1007/978-3-319-75583-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-75583-0_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-75582-3

  • Online ISBN: 978-3-319-75583-0

  • eBook Packages: MedicineMedicine (R0)