Skip to main content

Strength Training for Swimmers

Abstract

This chapter covers the impact of strength training for swimming performance (free swimming, starts, and turns); its effects on swimming biomechanics; dry-land and in-water strength training methods; and the periodization of strength training for swimming performance.

Keywords

  • Resistance training
  • Concurrent training
  • Tethered swimming
  • Start
  • Turn
  • Power
  • Periodization

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-75547-2_25
  • Chapter length: 18 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   119.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-75547-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   159.99
Price excludes VAT (USA)
Hardcover Book
USD   159.99
Price excludes VAT (USA)
Fig. 25.1

References

  1. Newton RU, Jones J, Kraemer WJ, Wardle H. Strength and power training in Asutralian Olympic swimmers. Strength Cond J. 2002;24:7–15.

    CrossRef  Google Scholar 

  2. Pelot T, Darmiento A. Strength and power training for the elite swimmer: can weights positively impact elite swim performance when “elite performance” requires 15 – 25 hours/week of practice? Olympic Coach. 2012;23:22–31.

    Google Scholar 

  3. Vorontsov A. Strength and power training in swimming. In: Seifert L, Chollet D, Mujika I, editors. World book of swimming: from science to performance. New York: Nova Science Publishers Inc.; 2011. p. 313–43.

    Google Scholar 

  4. Riewald S. Strength and conditioning for performance enhancement. In: Riewald S, Rodeo S, editors. Science of swimming faster. Champaign: Human Kinetics; 2015. p. 401–48.

    Google Scholar 

  5. Sharp RL, Troup JP, Costill DL. Relationship between power and sprint freestyle swimming. Med Sci Sports Exerc. 1981;14:53–6.

    CrossRef  Google Scholar 

  6. Costill D, Rayfield F, Kirwan J, Thomas R. A computer based system for the measurement of force and power during front crawl swimming. J Swim Res. 1986;2:16–9.

    Google Scholar 

  7. Hawley JA, Williams MM, Vickovic MM, Handcock PJ. Muscle power predicts freestyle swimming performance. Br J Sports Med. 1992;26:151–5.

    CrossRef  CAS  Google Scholar 

  8. Tanaka H, Costill DL, Thomas R, Fink WJ, Widrick JJ. Dry-land resistance training for competitive swimming. Med Sci Sports Exerc. 1993;25:952–9.

    CrossRef  CAS  Google Scholar 

  9. Tanaka H, Swensen T. Impact of resistance training on endurance performance. Sports Med. 1998;25:191–200.

    CrossRef  CAS  Google Scholar 

  10. Girold S, Maurin D, Dugué B, Chatard J-C, Millet G. Effects of dry-land vs. resisted-and assisted-sprint exercises on swimming sprint performances. J Strength Cond Res. 2007;21:599–605.

    PubMed  Google Scholar 

  11. Hollander AP, de Groot G, van Ingen Schenau GJ, Kahman R, Toussaint HM. Contribution of the legs to propulsion in front crawl swimming. In: Ungerechts BE, Wilke K, Reischle K, editors. Swimming science V, vol. 5. Champaign: Human Kinetics; 1988. p. 39–44.

    Google Scholar 

  12. Toussaint HM, Beek PJ. Biomechanics of competitive front crawl swimming. Sports Med. 1992;13:8–24.

    CrossRef  CAS  Google Scholar 

  13. Smith DJ, Norris SR, Hogg JM. Performance evaluation of swimmers. Sports Med. 2002;32:539–54.

    CrossRef  Google Scholar 

  14. Bucher W. The influence of the leg kick and the arm stroke on the total speed during the crawl stroke. In: Lewillie L, Clarys JP, editors. Swimming II. Brussels: University Park Press; 1975. p. 180–7.

    Google Scholar 

  15. Deschodt V, Arsac L, Rouard A. Relative contribution of arms and legs in humans to propulsion in 25-m sprint front-crawl swimming. Eur J Appl Physiol Occup Physiol. 1999;80:192–9.

    CrossRef  CAS  Google Scholar 

  16. Zamparo P, Pendergast D, Mollendorf J, Termin A, Minetti A. An energy balance of front crawl. Eur J Appl Physiol. 2005;94:134–44.

    CrossRef  CAS  Google Scholar 

  17. Carl DL, Leslie N, Dickerson T, Griffin B, Marksteiner A. Bench press and leg press strength and its relationships with in-water force and swimming performance when measured in-season in male and fenale age-group swimmers. In: Kjendlie PL, Stallman RK, Cabri J, editors. Biomechanics and medicine in swimming XI. Oslo: Norwegian School of Sport Science; 2010. p. 247–8.

    Google Scholar 

  18. Morouço P, Neiva H, González-Badillo JJ, Garrido N, Marinho DA, Marques MC. Associations between dry land strength and power measurements with swimming performance in elite athletes: a pilot study. J Hum Kinet. 2011;29A:105–12. https://doi.org/10.2478/v10078-011-0065-2.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  19. Nikolaidis PT. Age- and sex-related differences in force-velocity characteristics of upper and lower limbs of competitive adolescent swimmers. J Hum Kinet. 2012;32:87–95. https://doi.org/10.2478/v10078-012-0026-4.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  20. Gatta G, Leban B, Paderi M, Padulo J, Migliaccio GM, Pau M. The development of swimming power. Muscles Ligaments Tendons J. 2015;4:438–45.

    PubMed  PubMed Central  Google Scholar 

  21. Crowley E, Harrison AJ, Lyons M. The impact of resistance training on swimming performance: a systematic review. Sports Med. 2017;47(11):2285–307. https://doi.org/10.1007/s40279-017-0730-2.

    CrossRef  PubMed  Google Scholar 

  22. Swaine IL, Hunter AM, Carlton KJ, Wiles JD, Coleman D. Reproducibility of limb power outputs and cardiopulmonary responses to exercise using a novel swimming training machine. Int J Sports Med. 2010;31:854–9. https://doi.org/10.1055/s-0030-1265175.

    CrossRef  CAS  PubMed  Google Scholar 

  23. Toubekis AG, Gourgoulis V, Tokmakidis SP. Tethered swimming as an evaluation tool of single arm-stroke force. In: Kjendlie PL, Stallman RK, Cabri J, editors. Biomechanics and medicine in swimming XI. Oslo: Norwegian School of Sport Science; 2010. p. 296–9.

    Google Scholar 

  24. Domínguez-Castells R, Izquierdo M, Arellano R. An updated protocol to assess arm swimming power in front crawl. Int J Sports Med. 2013;34:324–9. https://doi.org/10.1055/s-0032-1323721.

    CrossRef  PubMed  Google Scholar 

  25. Formosa DP, Mason B, Burkett B. The force-time profile of elite front crawl swimmers. J Sports Sci. 2011;29:811–9. https://doi.org/10.1080/02640414.2011.561867.

    CrossRef  PubMed  Google Scholar 

  26. West DJ, Owen NJ, Cunningham DJ, Cook CJ, Kilduff LP. Strength and power predictors of swimming starts in international sprint swimmers. J Strength Cond Res. 2011;25:950–5.

    CrossRef  Google Scholar 

  27. García-Ramos A, Tomazin K, Feriche B, Strojnik V, De la Fuente B, Argüelles-Cienfuegos J, et al. The relationship between the lower-body muscular profile and swimming start performance. J Hum Kinet. 2016;50:157–65. https://doi.org/10.1515/hukin-2015-0152.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  28. Beretić I, Đurović M, Okičić T, Dopsaj M. Relations between lower body isometric muscle force characteristics and start performance in elite male sprint swimmers. J Sports Sci Med. 2013;12:639.

    PubMed  PubMed Central  Google Scholar 

  29. Vantorre J, Seifert L, Fernandes RJ, Boas JP, Chollet D. Comparison of grab start between elite and trained swimmers. Int J Sports Med. 2010;31:887–93. https://doi.org/10.1055/s-0030-1265150.

    CrossRef  CAS  PubMed  Google Scholar 

  30. Potdevin FJ, Alberty ME, Chevutschi A, Pelayo P, Sidney MC. Effects of a 6-week plyometric training program on performances in pubescent swimmers. J Strength Cond Res. 2011;25:80–6.

    CrossRef  Google Scholar 

  31. Bishop DC, Smith RJ, Smith MF, Rigby HE. Effect of plyometric training on swimming block start performance in adolescents. J Strength Cond Res. 2009;23:2137–43.

    CrossRef  Google Scholar 

  32. Rebutini VZ, Pereira G, Bohrer RC, Ugrinowitsch C, Rodacki AL. Plyometric long jump training with progressive loading improves kinetic and kinematic swimming start parameters. J Strength Cond Res. 2016;30:2392–8.

    CrossRef  Google Scholar 

  33. Lyttle AD, Blanksby BA, Elliott BC, Lloyd DG. Investigating kinetics in the freestyle flip turn push-off. J Appl Biomech. 1999;15:242–52.

    CrossRef  Google Scholar 

  34. Lyttle AD, Blanksby BA, Elliott BC, Lloyd DG. Net forces during tethered simulation of underwater streamlined gliding and kicking techniques of the freestyle turn. J Sports Sci. 2000;18:801–7. https://doi.org/10.1080/026404100419856.

    CrossRef  CAS  PubMed  Google Scholar 

  35. Cronin J, Jones J, Frost D. The relationship between dry-land power measures and tumble turn velocity in elite swimmers. J Swim Res. 2007;17:17–23.

    Google Scholar 

  36. Jones JV, Pyne DB, Haff GG, Newton RU. Comparison between elite and sub-elite swimmers on dry-land and tumble turn leg extensor force-time characteristics. J Strength Cond Res. 2018;32(6):1762–9. https://doi.org/10.1519/JSC0000000000002041.

    CrossRef  PubMed  Google Scholar 

  37. Jones JV, Pyne DB, Haff GG, Newton RU. Comparison of ballistic and strength training on swimming turn and dry-land leg extensor characteristics in elite swimmers. Int J Sports Sci Coach. Volume 13, p. 262–69; https://doi.org/10.1177/1747954117726017

    CrossRef  Google Scholar 

  38. Craig AB, Pendergast DR. Relationships of stroke rate, distance per stroke, and velocity in competitive swimming. Med Sci Sports Exerc. 1979;11:278–83.

    CrossRef  Google Scholar 

  39. Schnitzler C, Seifert L, Chollet D. Arm coordination and performance level in the 400-m front crawl. Res Q Exerc Sport. 2011;82:1–8.

    CrossRef  Google Scholar 

  40. Laffite LP, Vilas-Boas JP, Demarle A, et al. Changes in physiological and stroke parameters during a maximal 400-m free swimming test in elite swimmers. Can J Appl Physiol. 2004;29:17–31.

    CrossRef  Google Scholar 

  41. Mujika I, Chatard JC, Busso T, Geyssant A, Barale F, Lacoste L. Use of swim-training profiles and performance data to enhance training effectiveness. J Swim Res. 1996;11:23–9.

    Google Scholar 

  42. Alberty M, Potdevin F, Dekerle J, et al. Changes in swimming technique during time to exhaustion at freely chosen and controlled stroke rates. J Sports Sci. 2008;26:1191–200.

    CrossRef  Google Scholar 

  43. Huot-Marchand F, Nesi X, Sidney M, et al. Is improvement in performance linked to higher stroke length values in top-level 100-m front crawl swimmers? J Hum Mov Stud. 2005;6:12–8.

    Google Scholar 

  44. Costill D, Sharp R, Troup J. Muscle strength: contributions to sprint swimming. Swim World. 1980;21:29–34.

    Google Scholar 

  45. Hay J, Guimaraes A, Grimston S. A quantitative look at swimming biomechanics. Swim Tech. 1983;20(2):11–7.

    Google Scholar 

  46. Craig AB, Skehan PL, Pawelczyk JA, Boomer WL. Velocity, stroke rate, and distance per stroke during elite swimming competition. Med Sci Sports Exerc. 1985;17:625–34.

    CrossRef  Google Scholar 

  47. Chatard J-C, Mujika I. Training load and performance in swimming. In: Keskinen KL, Komi PV, Hollander AP, editors. Biomechanics and medicine in swimming VIII. Jyväskylä: University of Jyväskylä; 1999. p. 429–34.

    Google Scholar 

  48. Girold S, Calmels P, Maurin D, Milhau N, Chatard J-C. Assisted and resisted sprint training in swimming. J Strength Cond Res. 2006;20:547–54.

    PubMed  Google Scholar 

  49. Figueiredo P, Zamparo P, Sousa A, Vilas-Boas JP, Fernandes RJ. An energy balance of the 200 m front crawl race. Eur J Appl Physiol. 2011;111:767–77.

    CrossRef  Google Scholar 

  50. Fernandes RJ, Marinho DA, Barbosa TM, Vilas-Boas JP. Is time limit at the minimum swimming velocity of VO2 max influenced by stroking parameters? Percept Mot Skills. 2006;103:67–75.

    PubMed  Google Scholar 

  51. Strass D. Effects of maximal strength training on sprint performance of competitive swimmers. In: Swimming science V: international series on sport sciences, vol 18; 1988. p. 149–56.

    Google Scholar 

  52. Girold S, Jalab C, Bernard O, Carette P, Kemoun G, Dugué B. Dry-land strength training vs. electrical stimulation in sprint swimming performance. J Strength Cond Res. 2012;26:497–505.

    CrossRef  Google Scholar 

  53. Aspenes S, Kjendlie PL, Hoff J, Helgerud J. Combined strength and endurance training in competitive swimmers. J Sports Sci Med. 2009;8:357–65.

    PubMed  PubMed Central  Google Scholar 

  54. Wakayoshi K, D’Acquisto L, Cappaert J, Troup J. Relationship between oxygen uptake, stroke rate and swimming velocity in competitive swimming. Int J Sports Med. 1995;16:19–23.

    CrossRef  CAS  Google Scholar 

  55. Berryman N, Mujika I, Arvisais D, Roubeix M, Binet C, Bosquet L. Strength training for middle- and long-distance performance: a meta-analysis. Int J Sports Physiol Perform. 2018;13(1):57–63. https://doi.org/10.1123/ijspp.2017-0032.

    CrossRef  PubMed  Google Scholar 

  56. Mujika I, Chatard JC, Busso T, Geyssant A, Barale F, Lacoste L. Effects of training on performance in competitive swimming. Can J Appl Physiol. 1995;20:395–406.

    CrossRef  CAS  Google Scholar 

  57. Aspenes ST, Karlsen T. Exercise-training intervention studies in competitive swimming. Sports Med. 2012;42:527–43. https://doi.org/10.2165/11630760-000000000-00000.

    CrossRef  PubMed  Google Scholar 

  58. McGowan CJ, Pyne DB, Thompson KG, Raglin JS, Osborne M, Rattray B. Elite sprint swimming performance is enhanced by completion of additional warm-up activities. J Sports Sci. 2017;35:1493–9. https://doi.org/10.1080/02640414.2016.1223329.

    CrossRef  PubMed  Google Scholar 

  59. McGowan CJ, Thompson KG, Pyne DB, Raglin JS, Rattray B. Heated jackets and dryland-based activation exercises used as additional warm-ups during transition enhance sprint swimming performance. J Sci Med Sport. 2016;19:354–8.

    CrossRef  Google Scholar 

  60. McGowan CJ, Pyne DB, Thompson KG, Rattray B. Warm-up strategies for sport and exercise: mechanisms and applications. Sports Med. 2015;45:1523–46.

    CrossRef  Google Scholar 

  61. Gettman LR, Ayres JJ, Pollock ML, Jackson A. The effect of circuit weight training on strength, cardiorespiratory function, and body composition of adult men. Med Sci Sports. 1977;10:171–6.

    Google Scholar 

  62. Tabata I, Nishimura K, Kouzaki M, Hirai Y, Ogita F, Miyachi M, et al. Effects of moderate-intensity endurance and high-intensity intermittent training on anaerobic capacity and VO2max. Med Sci Sports Exerc. 1996;28:1327–30.

    CrossRef  CAS  Google Scholar 

  63. Katch FI, Freedson PS, Jones CA. Evaluation of acute cardiorespiratory responses to hydraulic resistance exercise. Med Sci Sports Exerc. 1985;17:168–73.

    CrossRef  CAS  Google Scholar 

  64. Ballor DL, Becque MD, Katch VL. Metabolic responses during hydraulic resistance exercise. Med Sci Sports Exerc. 1987;19:363–7.

    CrossRef  CAS  Google Scholar 

  65. La Torre A, Vernillo G, Fiorella P, Mauri C, Agnello L. Combined endurance and resistance circuit training in highly trained/top-level female race walkers: a case report. Sport Sci Health. 2008;4:51–8.

    CrossRef  Google Scholar 

  66. Coyle EF, Feiring D, Rotkis T, Cote R, Roby F, Lee W, et al. Specificity of power improvements through slow and fast isokinetic training. J Appl Physiol. 1981;51:1437–42.

    CrossRef  CAS  Google Scholar 

  67. Kanehisa H, Miyashita M. Specificity of velocity in strength training. Eur J Appl Physiol Occup Physiol. 1983;52:104–6.

    CrossRef  CAS  Google Scholar 

  68. Sadowski J, Mastalerz A, Gromisz W, Niźnikowski T. Effectiveness of the power dry-land training programmes in youth swimmers. J Hum Kinet. 2012;32:77–86.

    CrossRef  Google Scholar 

  69. Markovic G. Does plyometric training improve vertical jump height? A meta-analytical review. Br J Sports Med. 2007;41:349–55.

    CrossRef  Google Scholar 

  70. Cossor JM, Blanksby BA, Elliott BC. The influence of plyometric training on the freestyle tumble turn. J Sci Med Sport. 1999;2:106–16.

    CrossRef  CAS  Google Scholar 

  71. Shimonagata S, Taguchi M, Miura M. Effect of swimming power, swimming power endurance and dry-land power on 100 m freestyle performance. In: Chatard JC, editor. Biomechanics and medicine in swimming IX. Saint Etienne: University of Saint-Etienne; 2003. p. 391–6.

    Google Scholar 

  72. Clarys J. Hydrodynamics and electromyography: ergonomics aspects in aquatics. Appl Ergon. 1985;16:11–24.

    CrossRef  CAS  Google Scholar 

  73. Roberts AJ, Termin B, Reilly M, Pendergast D. Effectiveness of biokinetic training on swimming performance in collegiate swimmers. J Swim Res. 1991;7:5–11.

    Google Scholar 

  74. Hollander AP, de Groot G, van Ingen Schenau GJ, Toussaint HM, de Best H, Peeters W. Measurement of active drag forces during swimming. J Sports Sci. 1986;4:21–30.

    CrossRef  CAS  Google Scholar 

  75. Toussaint HM, Truijens M. Power requirements for swimming a world-record 50-m front crawl. Int J Sports Physiol Perform. 2006;1:61–4.

    CrossRef  Google Scholar 

  76. Toussaint HM, Vervoorn K. Effects of specific high resistance training in the water on competitive swimmers. Int J Sports Med. 1990;11:228–33.

    CrossRef  CAS  Google Scholar 

  77. David A, Poizat G, Gal-Petitfaux N, Toussaint H, Seifert ML. Analysis of elite swimmers’ activity during an instrumented protocol. J Sports Sci. 2009;27:1043–50. https://doi.org/10.1080/02640410902988669.

    CrossRef  PubMed  Google Scholar 

  78. Weston M, Hibbs AE, Thompson KG. Isolated core training improves sprint performance in national-level junior swimmers. Int J Sports Physiol Perform. 2015;10:204–10.

    CrossRef  Google Scholar 

  79. Dingley AA, Pyne DB, Youngson J, Burkett B. Effectiveness of a dry-land resistance training program on strength, power, and swimming performance in paralympic swimmers. J Strength Cond Res. 2015;29:619–26.

    CrossRef  Google Scholar 

  80. Juárez Santos-García D, González-Ravé JM, Legaz Arrese A, Portillo Yabar LJ, Clemente Suárez VJ, Newton RU. Acute effects of two resisted exercises on 25~ m swimming performance. Isokinet Exerc Sci. 2013;21:29–35.

    CrossRef  Google Scholar 

  81. Costill D. Training adaptations for optimal performance. In: Keskinen KL, Komi PV, Hollander AP, editors. Biomechanics and medicine in swimming VIII. Jyväskylä: University of Jyväskylä; 1999. p. 381–90.

    Google Scholar 

  82. Stewart AM, Hopkins WG. Seasonal training and performance of competitive swimmers. J Sports Sci. 2000;18:873–84.

    CrossRef  CAS  Google Scholar 

  83. Ribeiro J, Figueiredo P, Sousa A, Monteiro J, Pelarigo J, Vilas-Boas J, et al. V̇O2 kinetics and metabolic contributions during full and upper body extreme swimming intensity. Eur J Appl Physiol. 2015;115:1117–24.

    CrossRef  CAS  Google Scholar 

  84. Rodríguez F, Lätt E, Jürimäe J, Maestu J, Purge P, Rämson R, et al. V̇O2 kinetics in all-out arm stroke, leg kick and whole stroke front crawl 100-m swimming. Int J Sports Med. 2016;37:191–6.

    PubMed  Google Scholar 

  85. Konstantaki M, Winter E, Swaine I. Effects of arms-only swimming training on performance, movement economy, and aerobic power. Int J Sports Physiol Perform. 2008;3(3):294–304.

    CrossRef  Google Scholar 

  86. Morris KS, Osborne MA, Shephard ME, Skinner TL, Jenkins DG. Velocity, aerobic power and metabolic cost of whole body and arms only front crawl swimming at various stroke rates. Eur J Appl Physiol. 2016;116:1075–85.

    CrossRef  CAS  Google Scholar 

  87. Dragunas AJ, Dickey JP, Nolte VW. The effect of drag suit training on 50-m freestyle performance. J Strength Cond Res. 2012;26:989–94.

    CrossRef  Google Scholar 

  88. McGowan CJ, Pyne DB, Raglin JS, Thompson KG, Rattray B. Current warm-up practices and contemporary issues faced by elite swimming coaches. J Strength Cond Res. 2016;30:3471–80.

    CrossRef  Google Scholar 

  89. Telles T, Barbosa AC, Campos MH, Junior OA. Effect of hand paddles and parachute on the index of coordination of competitive crawl-strokers. J Sports Sci. 2011;29:431–8.

    CrossRef  Google Scholar 

  90. Douglas J, Pearson S, Ross A, McGuigan M. Chronic adaptations to eccentric training: a systematic review. Sports Med. 2017;47:917–41. https://doi.org/10.1007/s40279-016-0628-4.

    CrossRef  PubMed  Google Scholar 

  91. Chiu LZF, Salem GJ. Comparison of joint kinetics during free weight and flywheel resistance exercise. J Strength Cond Res. 2006;20:555–62.

    PubMed  Google Scholar 

  92. Moras G, Rodríguez-Jiménez S, Tous-Fajardo J, Ranz D, Mujika I. A vibratory bar for upper body: feasibility and acute effects on EMGrms activity. J Strength Cond Res. 2010;24:2132–42. https://doi.org/10.1519/JSC.0b013e3181aa3684.

    CrossRef  PubMed  Google Scholar 

  93. Wilcock IM, Whatman C, Harris N, Keogh JW. Vibration training: could it enhance the strength, power, or speed of athletes? J Strength Cond Res. 2009;23:593–603. https://doi.org/10.1519/JSC.0b013e318196b81f.

    CrossRef  PubMed  Google Scholar 

  94. Behm DG, Anderson KG. The role of instability with resistance training. J Strength Cond Res. 2006;20:716–22.

    PubMed  Google Scholar 

  95. Serra N, Carvalho DD, Fernandes RJ. The importance of agonistic, antagonist, and synergistic muscles coordination on swimming dry land training. Trends Sport Sci. 2017;3(24):101–4.

    Google Scholar 

  96. Hellard P, Scordia C, Avalos M, Mujika I, Pyne DB. Modelling of optimal training load patterns during the 11 weeks preceding major competition in elite swimmers. Appl Physiol Nutr Metab. 2017;42(10):1106–17. https://doi.org/10.1139/apnm-2017-0180.

    CrossRef  PubMed  Google Scholar 

  97. Trappe S, Costill D, Thomas R. Effect of swim taper on whole muscle and single muscle fiber contractile properties. Med Sci Sports Exerc. 2000;32:48–56.

    PubMed  Google Scholar 

  98. Trinity JD, Pahnke MD, Reese EC, Coyle EF. Maximal mechanical power during a taper in elite swimmers. Med Sci Sports Exerc. 2006;38:1643–9.

    CrossRef  Google Scholar 

  99. Papoti M, Martins LEB, Cunha SA, Zagatto AM, Gobatto CA. Effects of taper on swimming force and swimmer performance after an experimental ten-week training program. J Strength Cond Res. 2007;21:538–42.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iñigo Mujika .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Mujika, I., Crowley, E. (2019). Strength Training for Swimmers. In: Schumann, M., Rønnestad, B. (eds) Concurrent Aerobic and Strength Training. Springer, Cham. https://doi.org/10.1007/978-3-319-75547-2_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-75547-2_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-75546-5

  • Online ISBN: 978-3-319-75547-2

  • eBook Packages: MedicineMedicine (R0)