Concurrent Training in Elderly



Aging is associated with declines in the neuromuscular and cardiovascular systems, resulting in an impaired capacity to perform daily activities. To counteract the neuromuscular and cardiovascular declines associated with aging, combined strength and endurance training seems to be an effective strategy to improve muscle hypertrophy, strength and power output, as well as endurance performance. The purpose of this chapter is to discuss the neuromuscular and cardiorespiratory adaptations to concurrent training adaptations in the elderly.


Resistance training Power output Neuromuscular adaptations Cardiovascular function Functional outcomes Aerobic capacity 


  1. 1.
    Izquierdo M, Häkkinen K, Antón A, Garrues M, Ibañez J, Ruesta M, et al. Maximal strength and power, endurance performance, and serum hormones in middle-aged and elderly men. Med Sci Sports Exerc. 2001;33:1577–87.CrossRefGoogle Scholar
  2. 2.
    Izquierdo M, Häkkinen K, Ibanez J, Antón A, Garrués M, Ruesta M, et al. Effects of strength training on submaximal and maximal endurance performance capacity in middle-aged and older men. J Strength Cond Res. 2003;17:129–39.PubMedGoogle Scholar
  3. 3.
    Snijders T, Verdijk LB, van Loon LJC. The impact of sarcopenia and exercise training on skeletal muscle satellite cells. Ageing Res Rev. 2009;8:328–38.CrossRefGoogle Scholar
  4. 4.
    Aagaard P, Suetta C, Caserotti P, Magnusson SP, Kjaer M. Role of the nervous system in sarcopenia nad muscle atrophy with aging: strength training as a countermeasure. Scand J Med Sci Sports. 2010;20:49–64.CrossRefGoogle Scholar
  5. 5.
    Cadore EL, Izquierdo M, Conceição M, Radaelli R, Pinto RS, Baroni BM, et al. Echo intensity is associated with skeletal muscle power and cardiovascular performance in elderly men. Exp Gerontol. 2012a;47:473–8.CrossRefGoogle Scholar
  6. 6.
    Izquierdo M, Ibanez J, Gorostiaga EM, Garrues M, Zuñiga A, Antón A, et al. Maximal strength and power characteristics in isometric and dynamic actions of upper and lower extremities in middle-aged and older med. Acta Physiol Scand. 1999a;167:57–68.CrossRefGoogle Scholar
  7. 7.
    Izquierdo M, Aguado X, Gonzalez R, López JL, Häkkinen K. Maximal and explosive force production capacity and balance performance in men of different ages. Eur J Appl Physiol Occup Physiol. 1999b;79:260–7.CrossRefGoogle Scholar
  8. 8.
    Sayers SP, Bean J, Cuoco A, Le Brasseur NK, Jette A, Fielding RA. Changes in function and disability after resistance training: does velocity matter? A pilot study. Am J Phys Med Rehabil. 2003;82:605–13.PubMedGoogle Scholar
  9. 9.
    Henwood TR, Riek S, Taaffe DR. Strength versus muscle power specific resistance training in community-dwelling older adults. J Gerontol A Biol Sci Med Sci. 2008;63:83–91.CrossRefGoogle Scholar
  10. 10.
    Miszko TA, Cress ME, Slade JM, Covey CJ, Agrawal SK, Doerr CE. Effect of strength and power training on physical function in community-dwelling older adults. J Gerontol A Biol Sci Med Sci. 2003;58:171–5.CrossRefGoogle Scholar
  11. 11.
    Bottaro M, Machado SN, Nogueira W, Scales R, Veloso J. Effect of high versus low-velocity resistance training on muscular fitness and functional performance in older men. Eur J Appl Physiol. 2007;99:257–64.CrossRefGoogle Scholar
  12. 12.
    Reid KF, Fielding RA. Skeletal muscle power and functioning in older adults. Exerc Sport Sci Rev. 2012;40:1–12.CrossRefGoogle Scholar
  13. 13.
    Kraemer WJ, Patton JF, Gordon SE, Harman EA, Deschenes MR, Reynolds K, et al. Compatibility of high-intensity strength and endurance training on hormonal and skeletal muscle adaptations. J Appl Physiol. 1995;78:976–89.CrossRefGoogle Scholar
  14. 14.
    Pinto RS, Correa CS, Radaelli R, Cadore EL, Brown LE, Bottaro M. Short-term strength training improves muscle quality and functional capacity of elderly women. Age (Dordr). 2014;36(1):365–72. Scholar
  15. 15.
    Knight CA, Kamen G. Adaptations in muscle activation of the knee extensor muscle with strength training in young and older adults. J Electromyogr Kinesiol. 2001;11:405–12.CrossRefGoogle Scholar
  16. 16.
    Kamen G, Knight CA. Training-related adaptations in motor unit discharge rate in young and older adults. J Gerontol A Biol Sci Med Sci. 2004;59:1334–8.CrossRefGoogle Scholar
  17. 17.
    Aagaard P, Simonsen EB, Andersen JL, Magnusson P, Dyhre-Poulsen P. Neural adaptation to resistance training: changes in evoked V-wave and H-reflex responses. J Appl Physiol. 2002;92:2309–18.CrossRefGoogle Scholar
  18. 18.
    Izquierdo M, Häkkinen K, Ibañez J, Garrues M, Antón A, Zúniga A, et al. Effects of strength training on muscle power and serum hormones in middle-aged and older men. J Appl Physiol. 2001b;90:1497–507.CrossRefGoogle Scholar
  19. 19.
    Seals DR, Hagberg JM, Hurley BF, Ehsani AA, Holloszy JO. Endurance training in older men and women: I. Cardiovascular responses to exercise. J Appl Physiol. 1984;57:1024–31.CrossRefGoogle Scholar
  20. 20.
    Meredith CN, Frontera WR, Fisher EC, Hughes VA, Herland JC, Edwards J, et al. Peripheral effects of endurance training in young and old subjects. J Appl Physiol. 1989;66:2844–9.CrossRefGoogle Scholar
  21. 21.
    Wood RH, Reyes R, Welsch MA, Favarolo-Sabatier J, Sabatier M, Lee CM, et al. Concurrent cardiovascular and resistance training in healthy older adults. Med Sci Sports Exerc. 2001;33:1751–8.CrossRefGoogle Scholar
  22. 22.
    Izquierdo M, Ibañez J, Häkkinen K, Kraemer WJ, Larrión JL, Gorostiaga EM. Once weekly combined resistance and cardiovascular training in healthy older men. Med Sci Sports Exerc. 2004;36:435–43.CrossRefGoogle Scholar
  23. 23.
    Izquierdo M, Häkkinen K, Ibañez J, Kraemer WJ, Gorostiaga EM. Effects of combined resistance and cardiovascular training on strength, power, muscle cross-sectional area, and endurance markers in middle-aged men. Eur J Appl Physiol. 2005;94:70–5.CrossRefGoogle Scholar
  24. 24.
    Cadore EL, Pinto RS, Lhullier FLR, Correa CS, Alberton CL, Pinto SS, et al. Effects of strength, endurance and concurrent training on aerobic power and dynamic neuromuscular economy in elderly men. J Strength Cond Res. 2011a;25:758–66.CrossRefGoogle Scholar
  25. 25.
    Cadore EL, Pinto RS, Lhullier FLR, Correa CS, Alberton CL, Pinto SS, et al. Physiological effects of concurrent training in elderly men. Int J Sports Med. 2010;31:689–97.CrossRefGoogle Scholar
  26. 26.
    Cadore EL, Izquierdo M. Exercise interventions in polypathological aging patients that coexist with diabetes mellitus: improving functional status and quality of life. Age (Dordr). 2015;37:64. Scholar
  27. 27.
    Cadore EL, Izquierdo M, Alberton CL, Pinto RS, Conceição M, Cunha G, et al. Strength prior to endurance intra-session exercise sequence optimizes neuromuscular and cardiovascular gains in elderly men. Exp Gerontol. 2012b;47:164–9.CrossRefGoogle Scholar
  28. 28.
    Cadore EL, Izquierdo M, Pinto SS, Alberton CL, Pinto RS, Baroni BM, et al. Neuromuscular adaptations to concurrent training in the elderly: effects of intrasession exercise sequence. Age (Dordr). 2013a;35(3):891–903. Scholar
  29. 29.
    Cadore EL, Rodríguez-Mañas L, Sinclair A, Izquierdo M. Effects of different exercise interventions on risk of falls, gait ability and balance in physically frail older adults. A systematic review. Rejuvenation Res. 2013b;16:105–14. Scholar
  30. 30.
    Ferrari R, Kruel LF, Cadore EL, Alberton CL, Izquierdo M, Conceição M, et al. Efficiency of twice weekly concurrent training in trained elderly men. Exp Gerontol. 2013;48:1236–42.CrossRefGoogle Scholar
  31. 31.
    Wilhelm EN, Rech A, Minozzo F, Botton CE, Radaelli R, Teixeira BC, et al. Concurrent strength and endurance training exercise sequence does not affect neuromuscular adaptations in older men. Exp Gerontol. 2014;60:207–14.CrossRefGoogle Scholar
  32. 32.
    Ferrari R, Fuchs SC, Kruel LF, Cadore EL, Alberton CL, Pinto RS, et al. Effects of different concurrent resistance and aerobic training frequencies on muscle power and muscle quality in trained elderly men: a randomized clinical trial. Aging Dis. 2016;7(6):697–704. Scholar
  33. 33.
    Da Silva LXN, Teodoro JL, Menger E, Lopez P, Grazioli R, Farinha J, et al. Repetitions to failure versus not to failure during concurrent training in healthy elderly men: a randomized clinical trial. Exp Gerontol. 2018;108:18–27. Scholar
  34. 34.
    Holviala J, Häkkinen A, Alen M, Sallinen J, Häkkinen K. Effects of prolonged and maintenance strength training on force production, walking, and balance in aging women and men. Scand J Med Sci Sports. 2014;24(1):224–33. Scholar
  35. 35.
    Karavirta L, Tulppo MP, Laaksonen DE, Nyman K, Laukkanen RT, Kinnunen H, et al. Heart rate dynamics after combined endurance and strength training in older men. Med Sci Sports Exerc. 2009;41:1436–43.CrossRefGoogle Scholar
  36. 36.
    Sillampää E, Häkkinen A, Nyman K, Cheng S, Karavirta L, Laaksonen DE, et al. Body composition and fitness during strength and/or endurance training in older men. Med Sci Sports Exerc. 2008;40:950–8.CrossRefGoogle Scholar
  37. 37.
    Sillampää E, Häkkinen A, Punnonen K, Häkkinen K, Laaksonen DE. Effects of strength and endurance training on metabolic risk factors in healthy 40-65-year-old men. Scand J Med Sci Sports. 2009a;19:885–95.CrossRefGoogle Scholar
  38. 38.
    Sillampää E, Laaksonen DE, Häkkinen A, Karavirta L, Jensen B, Kraemer WJ, et al. Body composition, fitness, and metabolic health during strength and endurance training and their combination in middle-aged and older women. Eur J Appl Physiol. 2009b;106:285–96.CrossRefGoogle Scholar
  39. 39.
    Karavirta L, Häkkinen A, Sillanpää E, Garcia-Lopez D, Kauhanen A, Haapasaari A, et al. Effects of combined endurance and strength training on muscle strength, power and hypertrophy in 40-67-year-old men. Scand J Med Sci Sports. 2011;21:402–11.CrossRefGoogle Scholar
  40. 40.
    Cadore EL, Izquierdo M. How to simultaneously optimize muscle strength, power, functional capacity, and cardiovascular gains in elderly: an update. Age (Dordr). 2013a;35:2329–44. Scholar
  41. 41.
    Cadore EL, Izquierdo M. New strategies for the concurrent strength-, power-, and endurance-training prescription in elderly individuals. J Am Med Dir Soc. 2013b;14:623–4.CrossRefGoogle Scholar
  42. 42.
    Fisher G, McCarthy JP, Zuckerman PA, Bryan DR, Bickel CS, Hunter GR. Frequency of combined resistance and aerobic training in older women. J Strength Cond Res. 2013;27(7):1868–76. Scholar
  43. 43.
    Schumann M, Küüsmaa M, Newton RU, Sirparanta AI, Syväoja H, Häkkinen A, et al. Fitness and lean mass increases during combined training independent of loading order. Med Sci Sports Exerc. 2014;46:1758–68. Scholar
  44. 44.
    McCarthy JP, Pozniak MA, Agre JC. Neuromuscular adaptations to concurrent strength and endurance training. Med Sci Sports Exerc. 2002;34:511–9.CrossRefGoogle Scholar
  45. 45.
    Häkkinen K, Alen M, Kraemer WJ, Gorostiaga EM, Izquierdo M, Rusko H, et al. Neuromuscular adaptations during concurrent strength and endurance training versus strength training. J Appl Physiol. 2003;89:42–52.Google Scholar
  46. 46.
    Bell GJ, Syrotuik D, Martin TP, Burnham R, Quinney HÁ. Effect of concurrent strength and endurance training on skeletal muscle properties and hormone concentrations in humans. Eur J Appl Physiol. 2000;81:418–27.CrossRefGoogle Scholar
  47. 47.
    Bell GJ, Syrotuik D, Socha T, Maclean I, Quinney HÁ. Effect of strength and endurance training on strength, testosterone, and cortisol. J Strength Cond Res. 1997;11:57–64.Google Scholar
  48. 48.
    Häkkinen K, Alen M, Kallinen M, Newton RU, Kraemer WJ. Neuromuscular adaptation during prolonged strength training, detraining and re-strength-training in middle-aged and elderly people. Eur J Appl Physiol. 2000;83:51–62.CrossRefGoogle Scholar
  49. 49.
    Häkkinen K, Kraemer WJ, Newton RU, Alen M. Changes in electromyografic activity, muscle fibre and force production characteristics during heavy resistance/power strength training in middle-aged and older men and women. Acta Physiol Scand. 2001;171:51–62.PubMedGoogle Scholar
  50. 50.
    Häkkinen K, Kallinen M, Izquierdo M, Jokelainen K, Lassila H, Mälkiä E, et al. Changes in agonist-antagonist EMG, muscle CSA, and force during strength training in middle-aged and older people. J Appl Physiol. 1998;84:1341–9.CrossRefGoogle Scholar
  51. 51.
    Cannon J, Kay D, Tarpenning KM, Marino FE. Comparative effects of resistance training on peak isometric torque, muscle hypertrophy, voluntary activation and surface EMG between young and elderly women. Clin Physiol Funct Imaging. 2007;27:91–100.CrossRefGoogle Scholar
  52. 52.
    Brentano MA, Cadore EL, Silva EM, Ambrosini AB, Coertjens M, Petkowics R, et al. Physiological adaptations to strength and circuit training in postmenopausal women with bone loss. J Strength Cond Res. 2008;22:1816–25.CrossRefGoogle Scholar
  53. 53.
    Frontera WR, Suh D, Krivickas LS, Hughes VA, Goldstein R, Roubenoff R. Skeletal muscle fiber quality in older men and women. Am J Physiol Cell Physiol. 2000;279:C611–8.CrossRefGoogle Scholar
  54. 54.
    Narici MV, Maganaris C, Reeves N. Myotendinous alterations and effects of resistive loading in old age. Scand J Med Sci Sports. 2005;15:392–401.CrossRefGoogle Scholar
  55. 55.
    Tracy BL, Ivey FM, Hurlbut D, Martel GF, Lemmer JT, Siegel EL, et al. Muscle quality. II. Effects of strength training in 65- to 75-yr-old men and women. J Appl Physiol. 1999;86:195–201.CrossRefGoogle Scholar
  56. 56.
    Astrand I, Astrand PO, Hallback I, Kilbom A. Reduction in maximal oxygen uptake with age. J Appl Physiol. 1973;35:649–54.CrossRefGoogle Scholar
  57. 57.
    Fleg JL, Lakatta EG. Role of muscle loss in the age-associated reduction in VO2max. J Appl Physiol. 1988;65:1147–51.CrossRefGoogle Scholar
  58. 58.
    Cadore EL, Pinto RS, Alberton CL, Pinto SS, Lhullier FLR, Tartaruga MP, et al. Neuromuscular economy, strength and endurance in healthy elderly men. J Strength Cond Res. 2011b;25:997–1003.CrossRefGoogle Scholar
  59. 59.
    Holviala J, Häkkinen A, Karavirta L, Nyman K, Izquierdo M, Gorostiaga EM, et al. Effects of combined strength and endurance training on treadmill load carrying walking performance in aging men. J Strength Cond Res. 2010;24:1584–95.CrossRefGoogle Scholar
  60. 60.
    Cadore EL, Pinto RS, Teodoro JL, Silva LXN, Menger E, Alberton CL, et al. Cardiorespiratory adaptations in elderly men following different concurrent training regimes. J Nutr Health Aging. 2018;22:483–90. Scholar
  61. 61.
    Cadore EL, Casas-Herrero A, Zambom-Ferraresi F, Idoate F, Millor N, Gómez M, et al. Multicomponent exercises including muscle power training enhance muscle mass, power output, and functional outcomes in institutionalized frail nonagenarians. Age (Dordr). 2014;36(2):773–85. Scholar
  62. 62.
    Izquierdo M, Cadore EL. Muscle power training in the institutionalized frail: a new approach to counteracting functional declines and very late-life disability. Cur Med Res Opinion. 2014;30:1385–90.CrossRefGoogle Scholar
  63. 63.
    Pereira A, Izquierdo M, Silva AJ, Costa AM, Bastos E, González-Badillo JJ, et al. Effects of high-speed power training on functional capacity and muscle performance in older women. Exp Gerontol. 2012;47:250–5.CrossRefGoogle Scholar
  64. 64.
    Casas-Herrero A, Cadore EL, Zambom-Ferraresi F, Idoate F, Millor N, Martínez-Ramírez A, et al. Functional capacity, muscle fat infiltration, power output and cognitive impairment in institutionalized frail oldest-old. Rejuvenation Res. 2013;16(5):396–403. Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Exercise Research Laboratory, School of Physical Education, Physiotherapy and DanceUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
  2. 2.Department of Health SciencesPublic University of NavarrePamplonaSpain

Personalised recommendations