Transfer Learning for the Fully Automatic Segmentation of Left Ventricle Myocardium in Porcine Cardiac Cine MR Images

  • Antong Chen
  • Tian Zhou
  • Ilknur Icke
  • Sarayu Parimal
  • Belma Dogdas
  • Joseph Forbes
  • Smita Sampath
  • Ansuman Bagchi
  • Chih-Liang Chin
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10663)


A fully automatic approach for the segmentation of the left ventricle (LV) myocardium in porcine cardiac cine MRI images is proposed based on deep convolutional neural networks (CNN). We trained a 56-layer residual learning CNN (ResNet-56) from scratch on a set of porcine cine MRI images acquired internally, and another CNN via transfer learning by fine tuning a network previously trained on a public human cine MRI dataset. A leave-one-out validation was performed on an 8-specimen porcine cardiac cine MRI dataset (3,600 slices). Comparisons with manual segmentations show that both CNN models are able to produce precise results (99.94% “good” segmentations), while the CNN trained through transfer learning performs better by achieving Dice similarity coefficient (DSC) of 0.86, Hausdorff distance (HD) of 4.01 mm, and overall average perpendicular distance (APD) of 1.04 mm on average.


Cardiac imaging Transfer learning Convolutional neural networks 


  1. 1.
    Suzuki, Y., Yeung, A.C., Ikeno, F.: The representative porcine model for human cardiovascular disease. Biomed Res. Int. 2011, 1–10 (2010)Google Scholar
  2. 2.
    Peng, P., Lekadir, K., Gooya, A., Shao, L., Petersen, S.E., Frangi, A.F.: A review of heart chamber segmentation for structural and functional analysis using cardiac magnetic resonance imaging. Magn. Reson. Mater. Phy. Biol. Med. 29(2), 155–195 (2016)CrossRefGoogle Scholar
  3. 3.
    Li, J., Zhang, R., Shi, L., Wang, D.: Automatic whole-heart segmentation in congenital heart disease using deeply-supervised 3D FCN. In: Zuluaga, M.A., Bhatia, K., Kainz, B., Moghari, M.H., Pace, D.F. (eds.) RAMBO/HVSMR -2016. LNCS, vol. 10129, pp. 111–118. Springer, Cham (2017). CrossRefGoogle Scholar
  4. 4.
    Tran, P.V.: A fully convolutional neural network for cardiac segmentation in short-axis MRI. arXiv preprint arXiv:1604.00494 (2016)
  5. 5.
    Poudel, R.P., Lamata, P., Montana, G.: Recurrent fully convolutional neural networks for multi-slice MRI cardiac segmentation. arXiv:1608.03974 (2016)
  6. 6.
    Zhen, X., Wang, Z., Islam, A., Bhaduri, M., Chan, I., Li, S.: Multi-scale deep networks and regression forests for direct bi-ventricular volume estimation. Med. Image Anal. 30, 120–129 (2016)CrossRefGoogle Scholar
  7. 7.
    Ngo, T.A., Lu, Z., Carneiro, G.: Combining deep learning and level set for the automated segmentation of the left ventricle of the heart from cardiac cine magnetic resonance. Med. Image Anal. 35, 159–171 (2017)CrossRefGoogle Scholar
  8. 8.
    Avendi, M.R., Kheradvar, A., Jafarkhani, H.: A combined deep-learning and deformable-model approach to fully automatic segmentation of the left ventricle in cardiac MRI. Med. Image Anal. 30, 108–119 (2016)CrossRefGoogle Scholar
  9. 9.
    He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)Google Scholar
  10. 10.
    Lin, X., Cowan, B.R., Young, A.A.: Automated detection of left ventricle in 4D MR images: experience from a large study. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 728–735 (2006)Google Scholar
  11. 11.
    Kingma, D., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)
  12. 12.
    Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22(10), 1345–1359 (2010)CrossRefGoogle Scholar
  13. 13.
    Zhou, T., Icke, I., Dogdas, B., Parimal, S., Sampath, S., Forbes, J., Bagchi, A., Chin, C., Chen, A.: Automatic segmentation of left ventricle in cardiac cine MRI images based on deep learning. In: Proceedings of SPIE 10133, Medical Imaging: Image Processing (2017)Google Scholar
  14. 14.
    Crick, S.J., Sheppard, M.N., Ho, S.Y., Gebstein, L., Anderson, R.H.: Anatomy of the pig heart: comparisons with normal human cardiac structure. J. Anat. 193(1), 105–119 (1998)CrossRefGoogle Scholar
  15. 15.
    Dice, L.R.: Measures of the amount of ecologic association between species. Ecology 26(3), 297–302 (1945)CrossRefGoogle Scholar
  16. 16.
    Huttenlocher, D.P., Klanderman, G.A., Rucklidge, W.J.: Comparing images using the Hausdorff distance. IEEE Trans. Patt. Anal. Mach. Intell. 15(9), 850–863 (1993)Google Scholar
  17. 17.
    Radau, P., Lu, Y., Connelly, K., Paul, G., Dick, A., Wright, G.: Evaluation framework for algorithms segmenting short axis cardiac MRI. MIDAS J. Card. MR Left Ventricle Segmentation Challenge 49, 134 (2009)Google Scholar
  18. 18.
    Chen, T., Li, M., Li, Y., Lin, M., Wang, N., Wang, M., Xiao, T., Xu, B., Zhang, C., Zhang, Z.: Mxnet: a flexible and efficient machine learning library for heterogeneous distributed systems. arXiv preprint arXiv:1512.01274 (2015)
  19. 19.
    Alba, X., Ventura, F., Rosa, M., Lekadir, K., Tobon-Gomez, C., Hoogendoorn, C., Frangi, A.F.: Automatic cardiac LV segmentation in MRI using modified graph cuts with smoothness and interslice constraints. Magn. Reson. Med. 72(6), 1775–1784 (2014)CrossRefGoogle Scholar
  20. 20.
    Bai, W., Shi, W., O’Regan, D.P., Tong, T., Wang, H., Jamil-Copley, S., Peters, N.S., Rueckert, D.: A probabilistic patch-based label fusion model for multi-atlas segmentation with registration refinement: application to cardiac MR images. IEEE Trans. Med. Imaging 32(7), 1302–1315 (2013)CrossRefGoogle Scholar
  21. 21.
    Zhu, Y., Papademetris, X., Sinusas, A.J., Duncan, J.S.: Segmentation of the left ventricle from cardiac MR images using a subject-specific dynamical model. IEEE Trans. Med. Imaging 29(3), 669–687 (2010)CrossRefGoogle Scholar
  22. 22.
    Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 234–241 (2015)Google Scholar
  23. 23.
    Xue, W., Nachum, I.B., Pandey, S., Warrington, J., Leung, S., Li, S.: Direct estimation of regional wall thicknesses via residual recurrent neural network. In: Niethammer, M., Styner, M., Aylward, S., Zhu, H., Oguz, I., Yap, P.-T., Shen, D. (eds.) IPMI 2017. LNCS, vol. 10265, pp. 505–516. Springer, Cham (2017). CrossRefGoogle Scholar
  24. 24.
    Parimal, S., Sampath, S., Mazlan, I., Croft, G., Totman, T., Zheng, Y.T.W., Manigbas, E., Klimas, M., Evelhoch, J.L., Kleijn, D.P.V., Chin, C.: Early prediction of chronic infarct size by acute strain: a cardiac MRI study of myocardial infarction in pigs. In: SMRT 26th Annual Meeting of International Society of Magnetic Resonance in Medicine (2017)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Antong Chen
    • 1
  • Tian Zhou
    • 2
  • Ilknur Icke
    • 3
  • Sarayu Parimal
    • 4
  • Belma Dogdas
    • 1
  • Joseph Forbes
    • 3
  • Smita Sampath
    • 4
  • Ansuman Bagchi
    • 1
  • Chih-Liang Chin
    • 4
  1. 1.Applied Mathematics and ModelingMerck & Co., Inc.KenilworthUSA
  2. 2.Department of Chemistry and Chemical BiologyRutgers UniversityNew BrunswickUSA
  3. 3.Global Research Information TechnologyMerck & Co., Inc.KenilworthUSA
  4. 4.Merck Sharp & Dohme, Translational BiomarkersSingaporeSingapore

Personalised recommendations