Skip to main content

Automatic Whole Heart Segmentation Using Deep Learning and Shape Context

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10663))

Abstract

To assist 3D cardiac image analysis, we propose an automatic whole heart segmentation using a deep learning framework combined with shape context information that is encoded in volumetric shape models. The proposed processing pipeline consists of three major steps: scout segmentation with orthogonal 2D U-nets, shape context estimation and refining segmentation with U-net and shape context. The proposed method was evaluated using the MMWHS challenge data. Two sets of networks were trained separately for contrast-enhanced CT and MRI. On the 20 training datasets, using 5-fold cross-validation, the average Dice coefficients for the left ventricle, the right ventricle, the left atrium, the right atrium and the myocardium of the left ventricle were 0.895, 0.795, 0.847, 0.821, 0.807 for MRI and 0.935, 0.825, 0.908, 0.881, 0.879 for CT, respectively. Further improvement may be possible given more training data or advanced data augmentation strategy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Lloyd-Jones, D.M., Larson, M.G., Beiser, A., Levy, D.: Lifetime risk of developing coronary heart disease. Lancet 353(9147), 89–92 (1999)

    Article  Google Scholar 

  2. Zhang, X., Cowan, B.R., Bluemke, D.A., Finn, J.P., Fonseca, C.G., Kadish, A.H., Lee, D.C., Lima, J.A.C., Suinesiaputra, A., Young, A.A., et al.: Atlas-based quantification of cardiac remodeling due to myocardial infarction. PLoS ONE 9(10), e110243 (2014)

    Article  Google Scholar 

  3. Bergström, G., Berglund, G., Anders Blomberg, J., Brandberg, G.E., Jan Engvall, M., Eriksson, U.F., Flinck, A., Hansson, M.G., et al.: The swedish cardiopulmonary bioimage study: objectives and design. J. Intern. Med. 278(6), 645–659 (2015)

    Article  Google Scholar 

  4. Zheng, Y., Barbu, A., Georgescu, B., Scheuering, M., Comaniciu, D.: Four-chamber heart modeling and automatic segmentation for 3-D cardiac CT volumes using marginal space learning and steerable features. IEEE Trans. Med. Imaging 27(11), 1668–1681 (2008)

    Article  Google Scholar 

  5. Zhuang, X., Shen, J.: Multi-scale patch and multi-modality atlases for whole heart segmentation of MRI. Med. Image Anal. 31, 77–87 (2016)

    Article  Google Scholar 

  6. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3431–3440 (2015)

    Google Scholar 

  7. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  8. Leventon, M.E., Grimson, W.E.L., Faugeras, O.: Statistical shape influence in geodesic active contours. In: 2000 Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 316–323. IEEE (2000)

    Google Scholar 

  9. Wang, C., Frimmel, H., Smedby, Ö.: Fast level-set based image segmentation using coherent propagation. Med. Phys. 41(7), 073501 (2014)

    Article  Google Scholar 

  10. Wang, C., Smedby, Ö.: Automatic multi-organ segmentation in non-enhanced CT datasets using hierarchical shape priors. In: Proceedings of the 22nd International Conference on Pattern Recognition (ICPR). IEEE (2014)

    Google Scholar 

  11. Wang, C., Wang, Q., Smedby, Ö.: Automatic heart and vessel segmentation using random forests and a local phase guided level set method. In: Zuluaga, M.A., Bhatia, K., Kainz, B., Moghari, M.H., Pace, D.F. (eds.) RAMBO/HVSMR -2016. LNCS, vol. 10129, pp. 159–164. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-52280-7_16

    Chapter  Google Scholar 

  12. Tu, Z., Bai, X.: Auto-context and its application to high-level vision tasks and 3D brain image segmentation. IEEE Trans. Patt. Anal. Mach. Intell. 32(10), 1744–1757 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

This research has been partially funded by the Swedish Research Council (VR), grant no. 2014-6153, and the Swedish Heart-Lung Foundation (HLF), grant no. 2016-0609.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunliang Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, C., Smedby, Ö. (2018). Automatic Whole Heart Segmentation Using Deep Learning and Shape Context. In: Pop, M., et al. Statistical Atlases and Computational Models of the Heart. ACDC and MMWHS Challenges. STACOM 2017. Lecture Notes in Computer Science(), vol 10663. Springer, Cham. https://doi.org/10.1007/978-3-319-75541-0_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-75541-0_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-75540-3

  • Online ISBN: 978-3-319-75541-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics