Abstract
Segmenting ventricular structures from cardiovascular MR scan is important for quantitative evaluation of heart. Manual delineation is time-consuming and tedious and lack of reproductivity. Considering MR image quality, heart variance, spatial inconsistency and motion artifacts during scanning, it is still a non-trivial task for automatic segmentation methods. In this paper, we propose a general and fully automatic solution to concurrently segment three important ventricular structures. Rooting in the deep learning trend, our method starts from 3D Fully Convolutional Network (3D FCN). We then enhance the 3D FCN with two well-verified blocks: (1) we conduct transfer learning between a pre-trained C3D model and our 3D FCN to get good initialization and thus suppress overfitting. (2) since boosting the gradient flow in network is beneficial to promote segmentation performance, we attach several auxiliary loss functions so as to expose early layers to better supervision. Because the volume size imbalance among different ventricular structures often biases the training of our 3D FCN, to this end, we investigate the capacity of different loss functions and propose a Multi-class Dice Similarity Coefficient (mDSC) based loss function to re-weight the training for all classes. We verified our method, especially the significance of mDSC, on the Automated Cardiac Diagnosis Challenge 2017 datasets for MR image segmentation. Extensive experimental results demonstrate the promising performance of our method.
X. Yang and C. Bian contributed equally to this work.
This is a preview of subscription content, access via your institution.
Buying options



References
Chen, H., Ni, D., Qin, J., et al.: Standard plane localization in fetal ultrasound via domain transferred deep neural networks. IEEE JBHI 19(5), 1627–1636 (2015)
Çiçek, Ö., Abdulkadir, A., et al.: 3D U-net: learning dense volumetric segmentation from sparse annotation. arXiv preprint arXiv:1606.06650 (2016)
Dou, Q., Yu, L., et al.: 3D deeply supervised network for automated segmentation of volumetric medical images. Med. Image Anal. 41, 40–54 (2017)
Kaus, M.R., von Berg, J., Weese, J., et al.: Automated segmentation of the left ventricle in cardiac MRI. Med. Image Anal. 8(3), 245–254 (2004)
Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: NIPS, pp. 1097–1105 (2012)
Lee, C.Y., Xie, S., Gallagher, P., Zhang, Z., Tu, Z.: Deeply-supervised nets (2015)
Liu, Y., Captur, G., Moon, J.C., Guo, S., Yang, X., Zhang, S., Li, C.: Distance regularized two level sets for segmentation of left and right ventricles from cine-MRI. Magn. Reson. Imaging 34(5), 699–706 (2016)
Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: CVPR, pp. 3431–3440 (2015)
Milletari, F., Navab, N., et al.: V-net: fully convolutional neural networks for volumetric medical image segmentation. In: 2016 Fourth International Conference on 3D Vision (3DV), pp. 565–571. IEEE (2016)
Peng, P., Lekadir, K., Gooya, A., Shao, L., Petersen, S.E., Frangi, A.F.: A review of heart chamber segmentation for structural and functional analysis using cardiac magnetic resonance imaging. Magma 29, 155 (2016)
Peters, J., Ecabert, O., Meyer, C., Schramm, H., Kneser, R., Groth, A., Weese, J.: Automatic whole heart segmentation in static magnetic resonance image volumes. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007. LNCS, vol. 4792, pp. 402–410. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75759-7_49
Pizer, S.M., Amburn, E.P., et al.: Adaptive histogram equalization and its variations. Comput. Vis. Graph. Image Process. 39(3), 355–368 (1987)
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)
Tran, D., Bourdev, L., Fergus, R., Torresani, L., Paluri, M.: Learning spatiotemporal features with 3D convolutional networks. In: ICCV, pp. 4489–4497 (2015)
Tran, P.V.: A fully convolutional neural network for cardiac segmentation in short-axis MRI. arXiv preprint arXiv:1604.00494 (2016)
Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1395–1403 (2015)
Yu, L., Yang, X., Qin, J., Heng, P.-A.: 3D FractalNet: dense volumetric segmentation for cardiovascular MRI volumes. In: Zuluaga, M.A., Bhatia, K., Kainz, B., Moghari, M.H., Pace, D.F. (eds.) RAMBO/HVSMR -2016. LNCS, vol. 10129, pp. 103–110. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-52280-7_10
Zhuang, X.: Challenges and methodologies of fully automatic whole heart segmentation: a review. J. Healthc. Eng. 4(3), 371–408 (2013)
Zhuang, X., Rhode, K.S., Razavi, R.S., Hawkes, D.J., Ourselin, S.: A registration-based propagation framework for automatic whole heart segmentation of cardiac MRI. IEEE Trans. Med. Imaging 29(9), 1612–1625 (2010)
Zotti, C., Luo, Z., et al.: Novel deep convolution neural network applied to MRI cardiac segmentation. arXiv preprint arXiv:1705.08943 (2017)
Acknowledgments
The work in this paper was supported by the grant from National Natural Science Foundation of China under Grant 61571304, a grant from Hong Kong Research Grants Council (Project no. GRF 14203115), a grant from the National Natural Science Foundation of China (Project No. 61233012) and a grant from Shenzhen Science and Technology Program (JCYJ20170413162256793).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Yang, X., Bian, C., Yu, L., Ni, D., Heng, PA. (2018). Class-Balanced Deep Neural Network for Automatic Ventricular Structure Segmentation. In: , et al. Statistical Atlases and Computational Models of the Heart. ACDC and MMWHS Challenges. STACOM 2017. Lecture Notes in Computer Science(), vol 10663. Springer, Cham. https://doi.org/10.1007/978-3-319-75541-0_16
Download citation
DOI: https://doi.org/10.1007/978-3-319-75541-0_16
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-75540-3
Online ISBN: 978-3-319-75541-0
eBook Packages: Computer ScienceComputer Science (R0)