Skip to main content

A Lagrangian Approach to the Simulation of a Constricted Vacuum Arc in a Magnetic Field

  • Conference paper
  • First Online:
Scientific Computing in Electrical Engineering

Part of the book series: Mathematics in Industry ((TECMI,volume 28))

Abstract

The use of numerical simulations of vacuum arcs can be very useful in order to improve the performance of vacuum interrupters. Standard computational fluid dynamics methods based on the Eulerian approach have difficulties to deal with this kind of problem, so a new technique is proposed, based on a Lagrangian approach. In order to focus on the performance of the new approach and not on specific details of a full model, a simplified arc model is used to investigate the capabilities of a Lagrangian approach in the context of vacuum arc simulations. The focus of this initial study is on implementing the necessary ingredients, that is, the development of a compressible flow solver, the introduction of the relevant boundary conditions and the coupling with the current conservation equation for the electric current. In addition, the stability of such a numerical scheme is evaluated. Furthermore, comparisons with results obtained using commercial software are also provided to demonstrate the validity of the results obtained with the new methodology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Slade, P.G.: The Vacuum Interrupter: Theory, Design, and Application. CRC Press, Boca Raton (2008)

    Google Scholar 

  2. Teichmann, J., Romheld, M., Hartmann, W.: Magnetically driven high current switching arcs in vacuum and low pressure gas. IEEE Trans. Plasma Sci. 27(4), 1021 (1999)

    Article  Google Scholar 

  3. Boxman, R.L.: High-current vacuum arc column motion on rail electrodes. J. Appl. Phys. 48, 1885–1889 (1977)

    Article  Google Scholar 

  4. Delachaux, T., Fritz, O., Gentsch, D., Schade, E., Shmelev, D.L.: Numerical simulation of a moving high-current vacuum arc driven by a transverse magnetic field. IEEE Trans. Plasma Sci. 35, 905 (2007)

    Article  Google Scholar 

  5. Delachaux, T., Fritz, O., Gentsch, D., Schade, E., Shmelev, D.L.: Simulation of a high current vacuum arc in a transverse magnetic field. IEEE Trans. Plasma Sci. 37, 1386 (2009)

    Article  Google Scholar 

  6. Shmelev, D.L., Delachaux, T.: Physical modeling and numerical simulation of constricted high-current vacuum arcs under the influence of a transverse magnetic field. IEEE Trans. Plasma Sci. 37, 1379–1385 (2009)

    Article  Google Scholar 

  7. Fritz, O., Shmelev, D., Hencken, K., Delachaux, T., Gentsch, D.: Results of 3D numerical simulations of high-current constricted vacuum arcs in a strong magnetic field. In: Proceedings of the 24th International Symposium on Discharges and Electrical Insulation in Vacuum (ISDEIV), 2010, pp. 359–364 (2010)

    Google Scholar 

  8. Cremonesi, M., Ferrara, L., Frangi, A., Perego, U.: Simulation of the flow of fresh cement suspensions by a Lagrangian finite element approach. J. Non-Newtonian Fluid Mech. 165, 1555–1563 (2010)

    Article  Google Scholar 

  9. Cremonesi, M., Ferrara, L., Frangi, A., Perego, U.: A Lagrangian finite element approach for the simulation of water-waves induced by landslides. Comput. Struct. 89, 1086–1093 (2011)

    Article  Google Scholar 

  10. Cremonesi, M., Frangi, A., Perego, U.: A Lagrangian finite element approach for the analysis of fluid–structure interaction problems. Int. J. Numer. Methods Eng. 84, 610–630 (2010)

    MathSciNet  MATH  Google Scholar 

  11. Scovazzi, G., Christon, M.A., Hughes, T.J.R., Shadid, J.N.: Stabilized shock hydrodynamics: I. A Lagrangian method. Comput. Methods Appl. Mech. Eng. 196, 923–966 (2007)

    Article  MathSciNet  Google Scholar 

  12. Dobrev, V.A., Ellis, T.E., Kolev, T.V., Rieben, R.N.: Curvilinear finite elements for Lagrangian hydrodynamics. Int. J. Numer. Methods Fluids 65, 1295–1310 (2011)

    Article  MathSciNet  Google Scholar 

  13. Spitzer, L.: Physics of Fully Ionized Gases. Interscience, New York (1965)

    MATH  Google Scholar 

  14. Cremonesi, M., Frangi, A.: A Lagrangian finite element method for 3D compressible flow applications. Comput. Methods Appl. Mech. Eng. 311, 374–392 (2016)

    Article  MathSciNet  Google Scholar 

  15. Dobrev, V.A., Kolev, T.V., Rieben, R.N.: High-order curvilinear finite element methods for Lagrangian hydrodynamics. SIAM J. Sci. Comput. 34, B606–B641 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Financial support of ABB Corporate Research is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimiliano Cremonesi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cremonesi, M., Frangi, A., Hencken, K., Buffoni, M., Abplanalp, M., Ostrowski, J. (2018). A Lagrangian Approach to the Simulation of a Constricted Vacuum Arc in a Magnetic Field. In: Langer, U., Amrhein, W., Zulehner, W. (eds) Scientific Computing in Electrical Engineering. Mathematics in Industry(), vol 28. Springer, Cham. https://doi.org/10.1007/978-3-319-75538-0_22

Download citation

Publish with us

Policies and ethics