Skip to main content

Gas-Dynamic Structure and Stability of Gas Microjets

  • Chapter
  • First Online:
Micro- and Nanoflows

Part of the book series: Fluid Mechanics and Its Applications ((FMIA,volume 118))

  • 859 Accesses

Abstract

Microjets are widely used for the mixing of gases and the protection of surfaces from chemically aggressive and high-temperature media. The basic technological characteristics of jets in this case are their penetration capability and the intensity of mixing processes. The goal of the present chapter is to study the structure and stability of microjets. The overview of the works on the study of the gas dynamics of subsonic and supersonic mini- and microjets is given in Sect. 2.1. As tools used in experimental investigations are also very important, they are described in much detail. Diagnostic methods and the results of studying subsonic plane jet stability are described in Sect. 2.2. Experiments aimed at studying the structure and stability of supersonic axisymmetric microjets and the results obtained therein are discussed in Sect. 2.3. Much attention is paid to the techniques used to obtain experimental data. Finally, the problem of microjet modeling with the use of commonly used similarity parameters is discussed in Sect. 2.4.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akey ND (1970) Overview of RAM reentry measurements program. In: Proceedings of the reentry plasma sheath and its effect on space vehicle electromagnetic systems, vol 1. NASA Langley Research Center SP-252, pp 25–26

    Google Scholar 

  • Alvi FS, Shih C, Elavarasan R, Garg G, Krothapalli A (2003) Controll of supersonic impinging jet flows using supersonic microjets. AIAA J 41(7):1347–1355

    Article  ADS  Google Scholar 

  • Aniskin VM, Maslov AA, Mironov SG (2011) Effect of nozzle size on supersonic microjet length. Tech Phys Lett 37(11):1046–1048

    Article  ADS  Google Scholar 

  • Aniskin VM, Bountin DA, Maslov AA, Mironov SG, Tsyryul’nikov IS (2012) Stability of a subsonic gas microjets. Tech Phys 57(2):174–180

    Article  ADS  Google Scholar 

  • Aniskin V, Mironov S, Maslov A (2013) Investigation of the structure of supersonic nitrogen microjets. Microfluid Nanofluid 14(3):605–614

    Article  Google Scholar 

  • Avduevskiy VS, Ivanov AV, Karpman IM, Traskovskiy VD, Yudelovich MY (1971) Effect of viscosity on movement in the initial section of a highly underexpanded jet. Dokl Phys 197(1):46–49

    Google Scholar 

  • Bayt R, Breuer K (2001) Systems design and performance of hot and cold supersonic microjets. AIAA Paper 2001-0721

    Google Scholar 

  • Brown CA (2005) Acoustics of excited jets—a historical perspective. NASA TM. 2005-213889

    Google Scholar 

  • Choi JJ, Annaswamy AM, Lou H, Alvi FS (2006) Active control of supersonic impingement tones using steady and pulsed microjets. Exp Fluids 41:841–855

    Article  Google Scholar 

  • Danalia I, van Boersma B (2000) Direct numerical simulation of bi-furcating jets. Phys Fluids 12(5):1255–1257

    Article  ADS  Google Scholar 

  • Fedorov A, Shiplyuk A, Maslov A et al (2003) Stabilization of a hypersonic boundary layer using an ultrasonically absorptive coating. J Fluid Mech 479:99–124

    Article  ADS  Google Scholar 

  • Fomin VM, Aniskin VM, Maslov AA, Mironov SG, Tsyryul’nikov IS (2010) Gas-dynamic flow structure and development of perturbations in microjets. Dokl Phys 55(8):419–422

    Article  ADS  Google Scholar 

  • Gau C, Shen CH, Wang ZB (2009) Peculiar phenomenon of micro-free-jet flow. Phys Fluids 21:092001 (1-13)

    Article  ADS  Google Scholar 

  • Ginevskiy AS, Vlasov EV, Karavosov RK (2001) Acoustic control of turbulent jets. Fizmatlit, Moskow

    Google Scholar 

  • Golod SV, Prinz VY, Mashanov VI, Gutakovsky AK (2001) Fabrication of conducting GeSi/Si micro-and nanotubes and helical microcoils. Semicond Sci Technol 16:181–185

    Article  ADS  Google Scholar 

  • Grek GR, Kozlov VV, Litninenko YA (2012) Stability of subsonic jet streams. Tutorial. Editorial Publishing Center NSU, Novosibirsk

    Google Scholar 

  • Kosinov AD, Maslov AA, Shevelkov SG (1990) Experiments on the stability of supersonic laminar boundary-layers. J Fluid Mech 219:621–633

    Article  ADS  Google Scholar 

  • Kozlov VV, Grek GR, Lofdahl LL, Chernoray VG, Litvinenko MV (2002) Role of localized streamwise structures in the process of transition to turbulence in boundary layers and jets (review). J Appl Mech Tech Phys 43(2):224–236

    Article  ADS  Google Scholar 

  • Kozlov GV, Grek GR, Sorokin AM, Litvinenko YuV (2008) Influence of initial at nozzle section on flow structure and instability of plane jet. Vestn NSU Phys Ser 3(3):25–37

    Google Scholar 

  • Kozlov VV, Grek GR, Litvinenko YV, Kozlov GV, Litvinenko MV (2010) Subsonic round and plane jets in the transversal acoustic field. Vestn NSU Phys Ser 5(2):28–43

    Google Scholar 

  • Litvinenko MV, Kozlov VV, Kozlov GV, Grek GR (2004) Effect of streamwise streaky structure on turbulization of a circular jet. Appl Mech Tech Phys 45(3):349–357

    Article  ADS  Google Scholar 

  • Litvinenko YA, Grek GR, Kozlov VV, Kozlov GV (2011) Subsonic round and plane jets in a transverse acoustic field. Dokl Phys 56(1):26–31

    Google Scholar 

  • Lou H, Alvi FS, Shih C (2006) Active and passive control of supersonic impinging jets. AIAA J 44(1):58–66

    Article  ADS  Google Scholar 

  • Maslov AA, Shiplyuk AN, Sidorenko AA et al (2001) Leading-edge receptivity of a hypersonic boundary layer on a flat plate. J Fluid Mech 426:73–94

    Article  ADS  Google Scholar 

  • Parmentier EM, Wray KL, Weiss RF (1970) Aerophysical plasma alleviation. In: Proceedings of the reentry plasma sheath and its effect on space vehicle electromagnetic systems, vol 1. NASA Langley Research Center SP-252, pp 579–616

    Google Scholar 

  • Phalnicar KA, Kumar R, Alvi FS (2008) Experiments on free and impinging microjets. Exp Fluids 44:819–830

    Article  Google Scholar 

  • Pogorelov VI (1977) Parameters determining the range of a supersonic gas jet. Sov Tech Phys 47(2):444–445

    Google Scholar 

  • Prinz VY, Seleznev VA, Gutakovsky AK, Chehovskiy AV, Preobrazhenskii VV, Putyato MA, Gavrilova TA (2000) Free-standing and overgrown InGaAs/GaAs nanotubes, nanohelices and their arrays. Physica E 6:828–831

    Google Scholar 

  • Prinz VY, Grutzmacher D, Beyer A, David C, Ketterer B, Deckardt E (2001) A new technique for fabricating three-dimensional micro- and nanostructures of various shapes. Nanotechnology 12:399–402

    Article  ADS  Google Scholar 

  • Reynolds WC, Parekh DE, Juvet PJD, Lee MJD (2003) Bifurcating and blooming jets. Annu Rev Fluid Mech 35:295–315

    Article  ADS  MathSciNet  Google Scholar 

  • Scroggs SD, Settles GS (1996) An experimental study of supersonic microjets. Exp Fluids 21:401–409

    Article  Google Scholar 

  • Seleznev VA, Prinz VY, Aniskin VM, Maslov AA (2009) Generation and registration of disturbances in a gas flow. 1. Formation of arrays of tubular microheaters and microsensors. J Appl Mech Tech Phys 50(2):291–296

    Article  ADS  Google Scholar 

  • Shiplyuk AN, Bountin DA, Maslov AA, Chokani N (2003) Nonlinear mechanisms of the initial stage of the laminar-turbulent transition at hypersonic velocities. J Appl Mech Tech Phys 44(5):654–659

    Article  ADS  Google Scholar 

  • Shirie JW, Siebold JG (1967) Length of supersonic core of jets. AIAA J 5(11):2062–2064

    Article  ADS  Google Scholar 

  • Tabeling P (2005) Introduction to microfluids. Oxford University Press, Oxford

    Google Scholar 

  • Tanney JW (1970) Fluidics. Prog Aerosp Sci 10:401–510

    Google Scholar 

  • Vorob’ev AB, Prinz VY (2002) Directional rolling of strained heterofilms. Semicond Sci Technol 17:614–616

    Article  ADS  Google Scholar 

  • Vulis LA, Kashkarov VP (1965) Theory of viscous fluid jets. Nauka, Moskow

    Google Scholar 

  • Zhang S, Zhong S (2010) Experimental investigation of flow separation control using an array of synthetic jets. AIAA J 48(3):611–623

    Article  ADS  Google Scholar 

  • Zhuang N, Alvi FS, Alkilsar M, Shih C (2006) Aeroacoustic properties of supersonic cavity flows and their control. AIAA J 44(9):2118–2128

    Article  ADS  Google Scholar 

  • Ziliĉ A, Hitt DL, Alexeenko AA (2007) Numerical simulations of supersonic flow in a linear aerospike micronozzle. AIAA Paper 2007-3984

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valery Ya. Rudyak .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rudyak, V.Y., Aniskin, V.M., Maslov, A.A., Minakov, A.V., Mironov, S.G. (2018). Gas-Dynamic Structure and Stability of Gas Microjets. In: Micro- and Nanoflows. Fluid Mechanics and Its Applications, vol 118. Springer, Cham. https://doi.org/10.1007/978-3-319-75523-6_2

Download citation

Publish with us

Policies and ethics