Skip to main content

A Roadmap Towards Machine Intelligence

  • Conference paper
  • First Online:
Computational Linguistics and Intelligent Text Processing (CICLing 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9623))

Abstract

The development of intelligent machines is one of the biggest unsolved challenges in computer science. In this paper, we propose some fundamental properties these machines should have, focusing in particular on communication and learning. We discuss a simple environment that could be used to incrementally teach a machine the basics of natural-language-based communication, as a prerequisite to more complex interaction with human users. We also present some conjectures on the sort of algorithms the machine should support in order to profitably learn from the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ando, R., Zhang, T.: A framework for learning predictive structures from multiple tasks and unlabeled data. J. Mach. Learn. Res. 5, 1817–1853 (2005)

    MathSciNet  MATH  Google Scholar 

  • Artzi, Y., Zettlemoyer, L.: Weakly supervised learning of semantic parsers for mapping instructions to actions. Trans. Assoc. Comput. Linguist. 1(1), 49–62 (2013)

    Google Scholar 

  • Bengio, Y., Louradour, J., Collobert, R., Weston, J.: Curriculum learning. In: Proceedings of ICML, Montreal, Canada, pp. 41–48 (2009)

    Google Scholar 

  • Boleda, G., Erk, K.: Distributional semantic features as semantic primitives-or not. In: Proceedings of the AAAI Spring Symposium on Knowledge Representation and Reasoning: Integrating Symbolic and Neural Approaches, Stanford, CA, pp. 2–5 (2015)

    Google Scholar 

  • Bottou, L.: From machine learning to machine reasoning: an essay. Mach. Learn. 94, 133–149 (2014)

    Article  MathSciNet  Google Scholar 

  • Branavan, S., Silver, D., Barzilay, R.: Learning to win by reading manuals in a Monte-Carlo framework. J. Artif. Intell. Res. 43, 661–704 (2012)

    MATH  Google Scholar 

  • Caruana, R.: Multitask learning. Mach. Learn. 28, 41–75 (1997)

    Article  Google Scholar 

  • Chen, D., Mooney, R.: Learning to interpret natural language navigation instructions from observations. In: Proceedings of AAAI, San Francisco, CA, pp. 859–865 (2011)

    Google Scholar 

  • Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., Kuksa, P.: Natural language processing (almost) from scratch. J. Mach. Learn. Res. 12, 2493–2537 (2011)

    MATH  Google Scholar 

  • Elman, J.: Learning and development in neural networks: the importance of starting small. Cognition 48, 71–99 (1993)

    Article  Google Scholar 

  • Erk, K.: Vector space models of word meaning and phrase meaning: a survey. Lang. Linguist. Compass 6(10), 635–653 (2012)

    Article  Google Scholar 

  • Fodor, J.: The Language of Thought. Crowell Press, New York (1975)

    Google Scholar 

  • Geman, D., Geman, S., Hallonquist, N., Younes, L.: Visual turing test for computer vision systems. Proc. Natl. Acad. Sci. 112(12), 3618–3623 (2015)

    Google Scholar 

  • Genesereth, M., Love, N., Pell, B.: General game playing: overview of the AAAI competition. AI Mag. 26(2), 62–72 (2005)

    Google Scholar 

  • Graves, A., Wayne, G., Danihelka, I.: Neural turing machines (2014). http://arxiv.org/abs/1410.5401

  • Grefenstette, E., Hermann, K., Suleyman, M., Blunsom, P.: Learning to transduce with unbounded memory. In: Proceedings of NIPS, Montreal, Canada (2014) (in Press)

    Google Scholar 

  • Haugeland, J.: Artificial Intelligence: The Very Idea. MIT Press, Cambridge (1985)

    Google Scholar 

  • Joulin, A., Mikolov, T.: Inferring algorithmic patterns with stack-augmented recurrent nets. In: Proceedings of NIPS, Montreal, Canada (2015) (in Press)

    Google Scholar 

  • Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: a survey. J. Artif. Intell. Res. 4, 237–285 (1996)

    Google Scholar 

  • LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521, 436–444 (2015)

    Article  Google Scholar 

  • Levesque, H.J., Davis, E., Morgenstern, L.: The Winograd schema challenge. In: Proceedings of KR, Rome, Italy, pp. 362–372 (2012)

    Google Scholar 

  • Louwerse, M.: Symbol interdependency in symbolic and embodied cognition. Top. Cogn. Sci. 3, 273–302 (2011)

    Article  Google Scholar 

  • MacMahon, M., Stankiewicz, B., Kuipers, B.: Walk the talk: connecting language, knowledge, and action in route instructions. In: Proceedings of AAAI, Boston, MA, pp. 1475–1482 (2006)

    Google Scholar 

  • Mikolov, T.: Incremental learning of algorithms. Unpublished manuscript (2013)

    Google Scholar 

  • Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space (2013). http://arxiv.org/abs/1301.3781/

  • Mitchell, T., Cohen, W., Hruschka, E., Talukdar, P., Betteridge, J., Carlson, A., Mishra, B., Gardner, M., Kisiel, B., Krishnamurthy, J., Lao, N., Mazaitis, K., Mohamed, T., Nakashole, N., Platanios, E., Ritter, A., Samadi, M., Settles, B., Wang, R., Wijaya, D., Gupta, A., Chen, X., Saparov, A., Greaves, M., Welling, J.: Never-ending learning. In: Proceedings of AAAI, Austin, TX, pp. 2302–2310 (2015)

    Google Scholar 

  • Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A., Veness, J., Bellemare, M., Graves, A., Riedmiller, M., Fidjeland, A., Ostrovski, G., Petersen, S., Beattie, C., Sadik, A., Antonoglou, I., King, H., Kumaran, D., Wierstra, D., Legg, S., Hassabis, D.: Human-level control through deep reinforcement learning. Nature 518, 529–533 (2015)

    Article  Google Scholar 

  • Morelli, R., Brown, M., Anselmi, D., Haberlandt, K., Lloyd, D. (eds.): Minds, Brains, and Computers: Perspectives in Cognitive Science and Artificial Intelligence. Ablex, Norwood (1992)

    Google Scholar 

  • Narasimhan, K., Kulkarni, T., Barzilay, R.: Language understanding for text-based games using deep reinforcement learning. In: Proceedings of EMNLP, Lisbon, Portugal, pp. 1–11 (2015)

    Google Scholar 

  • Nwana, H.: Software agents: an overview. Knowl. Eng. Rev. 11(2), 1–40 (1996)

    Google Scholar 

  • Poli, R., Langdon, W., McPhee, N., Koza, J.: A field guide to genetic programming (2008). http://www.gp-field-guide.org.uk

  • Prusinkiewicz, P., Lindenmayer, A.: The Algorithmic Beauty of Plants. Springer Science & Business Media, New York (2012)

    Google Scholar 

  • Ring, M.: CHILD: a first step towards continual learning. Mach. Learn. 28, 77–104 (1997)

    Article  MATH  Google Scholar 

  • Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach, 3d edn. Pearson Education, New York (2009)

    MATH  Google Scholar 

  • Schmidhuber, J.: Optimal ordered problem solver. Mach. Learn. 54(3), 211–254 (2004)

    Article  MATH  Google Scholar 

  • Schmidhuber, J.: On learning to think: algorithmic information theory for novel combinations of reinforcement learning controllers and recurrent neural world models (2015). http://arxiv.org/abs/1511.09249

  • Shoham, Y., Leyton-Brown, K.: Multiagent Systems. Cambridge University Press, Cambridge (2009)

    MATH  Google Scholar 

  • Silver, D., Yang, Q., Li, L.: Lifelong machine learning systems: beyond learning algorithms. In: Proceedings of the AAAI Spring Symposium on Lifelong Machine Learning, Stanford, CA, pp. 49–55 (2013)

    Google Scholar 

  • Solomonoff, R.J.: A formal theory of inductive inference. Part I. Inf. Control 7(1), 1–22 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  • Solomonoff, R.J.: The discovery of algorithmic probability. J. Comput. Syst. Sci. 55(1), 73–88 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  • Solomonoff, R.J.: Progress in incremental machine learning. In: NIPS Workshop on Universal Learning Algorithms and Optimal Search, Whistler, BC. Citeseer (2002)

    Google Scholar 

  • Steels, L.: Social language learning. In: Tokoro, M., Steels, L. (eds.) The Future of Learning, pp. 133–162. IOS, Amsterdam (2003)

    Google Scholar 

  • Steels, L.: What triggers the emergence of grammar? In: Proceedings of EELC, Hatfield, UK, pp. 143–150 (2005)

    Google Scholar 

  • Sukhbaatar, S., Szlam, A., Synnaeve, G., Chintala, S., Fergus, R.: MazeBase: a sandbox for learning from games (2015). http://arxiv.org/abs/1511.07401

  • Sutton, R., Barto, A.: Reinforcement Learning: An Introduction. MIT Press, Cambridge (1998)

    Google Scholar 

  • Tenenbaum, J.: Cognitive foundations for knowledge representation in AI. Presented at the AAAI Spring Symposium on Knowledge Representation and Reasoning (2015)

    Google Scholar 

  • Thomason, J., Zhang, S., Mooney, R., Stone, P.: Learning to interpret natural language commands through human-robot dialog. Proceedings IJCAI, pp. 1923–1929. Buenos Aires, Argentina (2015)

    Google Scholar 

  • Thrun, S., Pratt, L. (eds.): Learning to Learn. Kluwer, Dordrecht (1997)

    MATH  Google Scholar 

  • Turing, A.: Computing machinery and intelligence. Mind 59, 433–460 (1950)

    Article  MathSciNet  Google Scholar 

  • Turney, P., Pantel, P.: From frequency to meaning: vector space models of semantics. J. Artif. Intell. Res. 37, 141–188 (2010)

    MathSciNet  MATH  Google Scholar 

  • Von Neumann, J., Burks, A.W., et al.: Theory of self-reproducing automata. IEEE Trans. Neural Netw. 5(1), 3–14 (1966)

    Google Scholar 

  • Weston, J., Bordes, A., Chopra, S., Mikolov, T.: Towards AI-complete question answering: a set of prerequisite toy tasks (2015). http://arxiv.org/abs/1502.05698

  • Wikipedia: Artificial human companion (2015a). https://en.wikipedia.org/w/index.php?title=Artificial_human_companion&oldid=685507143. Accessed 15 Oct 2015

  • Wikipedia: Interactive fiction (2015b). https://en.wikipedia.org/w/index.php?title=Interactive_fiction&oldid=693926750. Accessed 19 Dec 2015

  • Wikipedia: Turing test (2015c). https://en.wikipedia.org/w/index.php?title=Turing_test&oldid=673582926. Accessed 30 July 2015

  • Winograd, T.: Procedures as a representation for data in a computer program for understanding natural language. Technical report AI 235, Massachusetts Institute of Technology (1971)

    Google Scholar 

Download references

Acknowledgments

We thank Léon Bottou, Yann LeCun, Gabriel Synnaeve, Arthur Szlam, Nicolas Usunier, Laurens van der Maaten, Wojciech Zaremba and others from the Facebook AI Research team, as well as Gemma Boleda, Katrin Erk, Germán Kruszewski, Angeliki Lazaridou, Louise McNally, Hinrich Schütze and Roberto Zamparelli for many stimulating discussions. An early version of this proposal has been discussed in several research groups since 2013 under the name Incremental learning of algorithms (Mikolov 2013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomas Mikolov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mikolov, T., Joulin, A., Baroni, M. (2018). A Roadmap Towards Machine Intelligence. In: Gelbukh, A. (eds) Computational Linguistics and Intelligent Text Processing. CICLing 2016. Lecture Notes in Computer Science(), vol 9623. Springer, Cham. https://doi.org/10.1007/978-3-319-75477-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-75477-2_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-75476-5

  • Online ISBN: 978-3-319-75477-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics