Skip to main content

Limiting Ranges of Function Values of Sparse Grid Surrogates

  • Conference paper
  • First Online:
Book cover Sparse Grids and Applications - Miami 2016

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 123))

Abstract

Sparse grid interpolants of high-dimensional functions do not maintain the range of function values. This is a core problem when one is dealing with probability density functions, for example. We present a novel approach to limit range of function values of sparse grid surrogates. It is based on computing minimal sets of sparse grid indices that extend the original sparse grid with properly chosen coefficients such that the function value range of the resulting surrogate function is limited to a certain interval. We provide the prerequisites for the existence of minimal extension sets and formally derive the intersection search algorithm that computes them efficiently. The main advantage of this approach is that the surrogate remains a linear combination of basis functions and, therefore, any problem specific post-processing operation such as evaluation, quadrature, differentiation, regression, density estimation, etc. can remain unchanged. Our sparse grid approach is applicable to arbitrarily refined sparse grids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H.-J. Bungartz, M. Griebel, Sparse grids. Acta Numer. 13, 147–269 (2004)

    Article  MathSciNet  Google Scholar 

  2. C. Feuersänger, Sparse grid methods for higher dimensional approximation. Ph.D. thesis, Rheinischen Friedrich–Wilhelms–Universität Bonn, 2010

    Google Scholar 

  3. F. Franzelin, D. Pflüger, From data to uncertainty: an efficient integrated data-driven sparse grid approach to propagate uncertainty, in Sparse Grids and Applications - Stuttgart 2014, ed. by J. Garcke, D. Pflüger (Springer International Publishing, Cham, 2016), pp. 29–49

    Chapter  Google Scholar 

  4. F. Franzelin, P. Diehl, D. Pflüger, Non-intrusive uncertainty quantification with sparse grids for multivariate peridynamic simulations, in Meshfree Methods for Partial Differential Equations VII, ed. by M. Griebel, M. A. Schweitzer. Lecture Notes in Computational Science and Engineering, vol. 100 (Springer International Publishing, Berlin, 2015), pp. 115–143

    Google Scholar 

  5. M. Frommert, D. Pflüger, T. Riller, M. Reinecke, H.-J. Bungartz, T. Enßlin, Efficient cosmological parameter sampling using sparse grids. Mon. Not. R. Astron. Soc. 406(2), 1177–1189 (2010)

    Google Scholar 

  6. J. Garcke, Maschinelles Lernen durch Funktionsrekonstruktion mit verallgemeinerten dünnen Gittern. Ph.D. thesis, University of Bonn, Institute for Numerical Simulation, 2004

    Google Scholar 

  7. M. Griebel, M. Hegland, A finite element method for density estimation with Gaussian process priors. SIAM J. Numer. Anal. 47(6), 4759–4792 (2010)

    Article  MathSciNet  Google Scholar 

  8. M. Hegland, G. Hooker, S. Roberts, Finite element thin plate splines in density estimation. ANZIAM J. 42, 712–734 (2000)

    Article  MathSciNet  Google Scholar 

  9. B. Peherstorfer, D. Pflüger, H.-J. Bungartz, Clustering based on density estimation with sparse grids, in KI 2012: Advances in Artificial Intelligence, ed. by B. Glimm, A. Krüger. Lecture Notes in Computer Science, vol. 7526 (Springer, Berlin, 2012), pp. 131–142

    Google Scholar 

  10. B. Peherstorfer, F. Franzelin, D. Pflüger, H.-J. Bungartz, Classification with Probability Density Estimation on Sparse Grids (Springer International Publishing, Cham, 2014), pp. 255–270

    MATH  Google Scholar 

  11. B. Peherstorfer, D. Pflüger, H.-J. Bungartz, Density estimation with adaptive sparse grids for large data sets, in Proceedings of the 2014 SIAM International Conference on Data Mining (2014), pp. 443–451

    Chapter  Google Scholar 

  12. D. Pflüger, Spatially Adaptive Sparse Grids for High-Dimensional Problems (Verlag Dr. Hut, München, 2010)

    MATH  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the German Research Foundation (DFG) for its financial support of the project within the Cluster of Excellence in Simulation Technology at the University of Stuttgart.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk Pflüger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Franzelin, F., Pflüger, D. (2018). Limiting Ranges of Function Values of Sparse Grid Surrogates. In: Garcke, J., Pflüger, D., Webster, C., Zhang, G. (eds) Sparse Grids and Applications - Miami 2016. Lecture Notes in Computational Science and Engineering, vol 123. Springer, Cham. https://doi.org/10.1007/978-3-319-75426-0_4

Download citation

Publish with us

Policies and ethics