Skip to main content

Implementing Contextual Neural Networks in Distributed Machine Learning Framework

  • Conference paper
  • First Online:
Intelligent Information and Database Systems (ACIIDS 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10752))

Included in the following conference series:

Abstract

Contextual neural networks are generalization of multilayer neural networks. They possess interesting property of automatic selection of data attributes needed for correct processing of given input vectors. To achieve that they are using neurons with conditional, multistep aggregation functions and error generalized error backpropagation algorithm based on self-consistency paradigm. According to the literature of the subject, currently there are no implementations of those models in high-performance machine learning platforms like Mahout or MLlib. In this paper we present initial results of implementation of contextual neural networks in distributed machine learning framework called H2O. The motivation behind this work is the need to analyze properties of contextual neural networks and conditional multi-step aggregation functions while solving large classification problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Grolinger, K., Capretz, M.A.M., Seewald, L.: Energy consumption prediction with big data: balancing prediction accuracy and computational resources. In: 2016 IEEE International Congress on Big Data (BigData Congress), pp. 1–8 (2016)

    Google Scholar 

  2. Ng, S.S.Y., Zhu, W., Tang, W.W.S., Wan, L.C.H., Wat, A.Y.W.: An independent study of two deep learning platforms - H2O and SINGA. In: 2016 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM), pp 1–5. IEEE Press, Bali (2016)

    Google Scholar 

  3. Niu, F., Recht, B., Christopher, R., Wright, S.J.: HOGWILD!: a lock-free approach to parallelizing stochastic gradient descent. In: Advances in Neural Information Processing Systems, pp. 693–701 (2011)

    Google Scholar 

  4. Richter, A.N., Khoshgoftaar, T.M., Landset, S., Hasanin, T.: A multi-dimensional comparison of toolkits for machine learning with big data. In: 2015 IEEE International Conference on Information Reuse and Integration, pp. 1–8. IEEE, San Francisco (2015)

    Google Scholar 

  5. Suleiman, D., Al-Naymat, G.: SMS spam detection using H2O framework. Procedia Comput. Sci. 113, 154–161 (2017)

    Article  Google Scholar 

  6. Domingos, S.L., Carvalho, R.N., Carvalho, R.S., Ramos, G.N.: Identifying IT purchases anomalies in the Brazilian government procurement system using deep learning. In: 15th IEEE International Conference on Machine Learning and Applications (ICMLA) (2016)

    Google Scholar 

  7. Al Najada, H., Mahgoub, I.: Big vehicular traffic data mining: towards accident and congestion prevention. In: International Wireless Communications and Mobile Computing Conference, pp. 256–261 (2016)

    Google Scholar 

  8. Huk, M.: Measuring the effectiveness of hidden context usage by machine learning methods under conditions of increased entropy of noise. In: 3rd IEEE International Conference on Cybernetics, pp. 1–6. IEEE Press (2017)

    Google Scholar 

  9. Liang, M., Trejo, C., Muthu, L., Ngo, L.B., Luckow, A., Apon, A.W.: Evaluating R-based big data analytic frameworks. In: 2015 IEEE International Conference on Cluster Computing (CLUSTER), pp. 1–2. IEEE, Chicago (2015)

    Google Scholar 

  10. Cook, D.: Practical Machine Learning with H2O Powerful, Scalable Techniques for Deep Learning and AI. O’Reilly Media, Newton (2016)

    Google Scholar 

  11. Huk, M.: Notes on the generalized backpropagation algorithm for contextual neural net-works with conditional aggregation functions. J. Intell. Fuzzy Syst. 32, 1365–1376 (2017)

    Article  Google Scholar 

  12. Huk, M.: Backpropagation generalized delta rule for the selective attention Sigma-if artificial neural network. Int. J. Appl. Math. Comput. Sci. 22, 449–459 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Huk, M.: Learning distributed selective attention strategies with the Sigma-if neural network. In: Akbar, M., Hussain, D. (eds.) Advances in Computer Science and IT, pp. 209–232. InTech, Vukovar (2009)

    Google Scholar 

  14. Huk, M., Pietraszko, J.: Contextual neural-network based spectrum prediction for cognitive radio. In: 4th International Conference on Future Generation Communication Technology (FGCT 2015), pp. 1–5. IEEE Computer Society, London (2015)

    Google Scholar 

  15. Huk, M.: Context injection as a tool for measuring context usage in machine learning. In: Nguyen, N.T., Tojo, S., Nguyen, L.M., Trawiński, B. (eds.) ACIIDS 2017. LNCS (LNAI), vol. 10191, pp. 697–708. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-54472-4_65

    Chapter  Google Scholar 

  16. Szczepanik, M., Jóźwiak, I.: Data management for fingerprint recognition algorithm based on characteristic points’ groups. In: Pechenizkiy, M., Wojciechowski, M. (eds.) New Trends in Databases and Information Systems. Advances in Intelligent Systems and Computing, vol. 185, pp. 425–432. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-32518-2_40

    Chapter  Google Scholar 

  17. Huk, M.: Using context-aware environment for elderly abuse prevention. In: Nguyen, N.T., Trawiński, B., Fujita, H., Hong, T.-P. (eds.) ACIIDS 2016. LNCS (LNAI), vol. 9622, pp. 567–574. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49390-8_55

    Chapter  Google Scholar 

  18. Huk, M.: Context-related data processing with artificial neural networks for higher reliability of telerehabilitation systems. In: 17th International Conference on E-health Networking, Application & Services (HealthCom), pp. 217–221. IEEE Computer Society, Boston (2015)

    Google Scholar 

  19. Huk, M., Kwasnicka, H.: The concept and properties of sigma-if neural network. In: Ribeiro, B., Albrecht, R.F., Dobnikar, A., Pearson, D.W., Steele, N.C. (eds.) Adaptive and Natural Computing Algorithms, pp. 13–17. Springer, Vienna (2005). https://doi.org/10.1007/3-211-27389-1_4

    Chapter  Google Scholar 

  20. Huk, M.: Sigma-if neural network as the use of selective attention technique in classification and knowledge discovery problems solving. Ann. UMCS Sectio AI – Inf. 4(2), 121–131 (2006)

    Google Scholar 

  21. Huk, M.: Manifestation of selective attention in Sigma-if neural network. In: 2nd International Symposium Advances in Artificial Intelligence and Applications, International Multiconference on Computer Science and Information Technology IMCSIT/AAIA 2007, vol. 2, pp. 225–236 (2007)

    Google Scholar 

  22. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15, 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  23. Privitera, C.M., Azzariti, M., Stark, L.W.: Locating regions-of-interest for the Mars Rover expedition. Int. J. Remote Sens. 21, 3327–3347 (2000)

    Article  Google Scholar 

  24. Mel, B.W.: The Clusteron: toward a simple abstraction for a complex neuron. In: Advances in Neural Information Processing Systems, vol. 4, pp. 35–42. Morgan Kaufmann (1992)

    Google Scholar 

  25. Spratling, M.W., Hayes, G.: Learning synaptic clusters for nonlinear dendritic processing. Neural Process. Lett. 11, 17–27 (2000)

    Article  Google Scholar 

  26. Raczkowski, D., Canning, A.: Thomas-Fermi charge mixing for obtaining self-consistency in density functional calculations. Phys. Rev. B 64, 121101–121105 (2001)

    Article  Google Scholar 

  27. UCI Machine Learning Repository. http://archive.ics.uci.edu/ml

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bartosz Jerzy Janusz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Janusz, B.J., Wołk, K. (2018). Implementing Contextual Neural Networks in Distributed Machine Learning Framework. In: Nguyen, N., Hoang, D., Hong, TP., Pham, H., Trawiński, B. (eds) Intelligent Information and Database Systems. ACIIDS 2018. Lecture Notes in Computer Science(), vol 10752. Springer, Cham. https://doi.org/10.1007/978-3-319-75420-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-75420-8_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-75419-2

  • Online ISBN: 978-3-319-75420-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics