The Optimal Control Problem with Fixed-End Trajectories for a Three-Sector Economic Model of a Cluster

  • Zainelkhriet Murzabekov
  • Marek Miłosz
  • Kamshat Tussupova
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10751)


For the mathematical model of a three-sector economic cluster, the problem of optimal control with fixed ends of trajectories is considered. An algorithm for solving the optimal control problem for a system with a quadratic functional is proposed. Control is defined on the basis of the principle of feedback. The problem is solved using the Lagrange multipliers of a special form, which makes it possible to find a synthesising control.


Optimal control problem Three-sector economic cluster Lagrange multiplier method Dynamical system Quadratic functional 


  1. 1.
    Pontryagin, L.S., Boltyanskii, V.G., Gamkre-lidze, R.V., Mishchenko, E.F.: The Mathematical Theory of Optimal Processes. Interscience Publishers, New York (1962)Google Scholar
  2. 2.
    Pontryagin, L.S.: The maximum principle in optimal control, Moscow (2004). (in Russian)Google Scholar
  3. 3.
    Bellman, R., Kalaba, R.: Dynamic Programming and Modern Control Theory. Academic Press, New York (1965)zbMATHGoogle Scholar
  4. 4.
    Krotov, V.F., Gurman, V.I.: Methods and Problems of Optimal Control. Nauka, Moscow (1973). (in Russian)Google Scholar
  5. 5.
    Kolemayev, V.A.: Economic-Mathematical Modeling. UNITY, Moscow (2005). (in Russian)Google Scholar
  6. 6.
    Dzhusupov, A.A., Kalimoldayev, M.N., Malishevsky, E.V., Murzabekov, Z.N.: Solution of a problem of stabilization of three-sector model of branch. Inf. Prob. 1, 20–27 (2011). (in Russian)Google Scholar
  7. 7.
    De, S.: Intangible capital and growth in the ‘new economy’: implications of a multi-sector endogenous growth model. Struct. Change Econ. Dynam. 28, 25–42 (2014)CrossRefGoogle Scholar
  8. 8.
    Dobrescu, L., Neamtu, M., Opris, D.: Deterministic and stochastic three-sector dynamic growth model with endogenous labour supply. Econ. Rec. 89(284), 99–111 (2013)CrossRefGoogle Scholar
  9. 9.
    Zhang, J.: The analytical solution of balanced growth of non-linear dynamic multi-sector economic model. Econ. Model. 28(1), 410–421 (2011)CrossRefGoogle Scholar
  10. 10.
    Zhou, S., Xue, M.: A model of optimal allocations of physical capital and human capital in three sectors. Wuhan Univ. J. Nat. Sci. 12(6), 997–1002 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Sen, P.: Capital accumulation and convergence in a small open economy. Rev. Int. Econ. 21(4), 690–704 (2013)CrossRefGoogle Scholar
  12. 12.
    Aseev, S.M., Besov, K.O., Kryazhimskii, A.V.: Infinite-horizon optimal control problems in economics. Russ. Math. Surv. 67(2), 195–253 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Shnurkov, P.V., Zasypko, V.V.: Analytical study of the problem of optimal investment management in a closed dynamic model of a three-sector economy. Bull. MSTU 2, 101–115 (2014). (in Russian)Google Scholar
  14. 14.
    Aipanov, S., Murzabekov, Z.: Analytical solution of a linear quadratic optimal control problem with control value constraints. Comput. Syst. Sci. Int. 53(1), 84–91 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Murzabekov, Z.N., Milosz, M., Tussupova, K.B.: Solution of steady state search problem in three-sector economic model of a cluster. Actual Probl. Econ. 3(165), 443–452 (2015)Google Scholar
  16. 16.
    Klamka, J.: Constrained controllability of dynamics systems. Int. J. Appl. Math. Comput. Sci. 9(2), 231–244 (1999)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Klamka, J.: Controllability of nonlinear discrete systems. Int. J. Appl. Math. Comput. Sci. 12(2), 173–180 (2002)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Al-Farabi Kazakh National UniversityAlmatyKazakhstan
  2. 2.Institute of Computer ScienceLublin University of TechnologyLublinPoland

Personalised recommendations