Advertisement

Path Histogram Distance for Rooted Labeled Caterpillars

  • Taiga Kawaguchi
  • Takuya Yoshino
  • Kouichi Hirata
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10751)

Abstract

In this paper, we focus on a caterpillar as a rooted labeled unordered tree (a tree, for short) transformed to a path after removing all the leaves in it. Also we introduce a path histogram distance between trees as an \(L_1\)-distance between the histograms of paths from the root to every leaf. Whereas the path histogram distance is not a metric for trees, we show that, for caterpillars, it is always a metric, simply linear-time computable and incomparable with the edit distance. Furthermore, we give experimental results for caterpillars in real data of comparing the path histogram distance with the isolated-subtree distance as the most general tractable variation of the edit distance.

Notes

Acknowledgment

The authors would like to thank anonymous referees of ACIIDS ’18 for valuable comments to revise the submitted version of this paper.

References

  1. 1.
    Aratsu, T., Hirata, K., Kuboyama, T.: Sibling distance for rooted labeled trees. In: Chawla, S., Washio, T., Minato, S., Tsumoto, S., Onoda, T., Yamada, S., Inokuchi, A. (eds.) PAKDD 2008. LNCS (LNAI), vol. 5433, pp. 99–110. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-00399-8_9 CrossRefGoogle Scholar
  2. 2.
    Gallian, J.A.: A dynamic survey of graph labeling, Electorn. J. Combin. 14, DS6 (2007)Google Scholar
  3. 3.
    Hirata, K., Yamamoto, Y., Kuboyama, T.: Improved MAX SNP-hard results for finding an edit distance between unordered trees. In: Giancarlo, R., Manzini, G. (eds.) CPM 2011. LNCS, vol. 6661, pp. 402–415. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-21458-5_34 CrossRefGoogle Scholar
  4. 4.
    Kailing, K., Kriegel, H.-P., Schönauer, S., Seidl, T.: Efficient similarity search for hierarchical data in large databases. In: Bertino, E., Christodoulakis, S., Plexousakis, D., Christophides, V., Koubarakis, M., Böhm, K., Ferrari, E. (eds.) EDBT 2004. LNCS, vol. 2992, pp. 676–693. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-24741-8_39 CrossRefGoogle Scholar
  5. 5.
    Kuboyama, T.: Matching and learning in trees, Ph.D. thesis, University of Tokyo (2007)Google Scholar
  6. 6.
    Li, F., Wang, H., Li, J., Gao, H.: A survey on tree edit distance lower bound estimation techniques for similarity join on XML data. SIGMOD Rec. 43, 29–39 (2013)Google Scholar
  7. 7.
    Tai, K.-C.: The tree-to-tree correction problem. J. ACM 26, 422–433 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Yamamoto, Y., Hirata, K., Kuboyama, T.: Tractable and intractable variations of unordered tree edit distance. Int. J. Found. Comput. Sci. 25, 307–330 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Yoshino, T., Hirata, K.: Tai mapping hierarchy for rooted labeled trees through common subforest. Theory Comput. Syst. 60, 759–783 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Zhang, K.: A constrained edit distance between unordered labeled trees. Algorithmica 15, 205–222 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Zhang, K., Jiang, T.: Some MAX SNP-hard results concerning unordered labeled trees. Inf. Process. Lett. 49, 249–254 (1994)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Taiga Kawaguchi
    • 1
  • Takuya Yoshino
    • 1
  • Kouichi Hirata
    • 2
  1. 1.Graduate School of Computer Science and Systems EngineeringKyushu Institute of TechnologyIizukaJapan
  2. 2.Department of Artificial IntelligenceKyushu Institute of TechnologyIizukaJapan

Personalised recommendations